These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37052180)

  • 21. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress.
    Chauhan H; Khurana N; Agarwal P; Khurana P
    Mol Genet Genomics; 2011 Aug; 286(2):171-87. PubMed ID: 21792744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice.
    Zou J; Liu C; Chen X
    Plant Cell Rep; 2011 Dec; 30(12):2155-65. PubMed ID: 21769604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and expression analysis of OsHsfs in rice.
    Wang C; Zhang Q; Shou HX
    J Zhejiang Univ Sci B; 2009 Apr; 10(4):291-300. PubMed ID: 19353748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).
    Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N
    J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion.
    Zhao Q; Guan X; Zhou L; Asad MA; Xu Y; Pan G; Cheng F
    Plant Cell Environ; 2023 May; 46(5):1453-1471. PubMed ID: 36691352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice embryos can express heat-shock genes under anoxia.
    Mocquot B; Ricard B; Pradet A
    Biochimie; 1987; 69(6-7):677-81. PubMed ID: 2446669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat stress induces distinct responses in porcine cumulus cells and oocytes associated with disrupted gap junction and trans-zonal projection colocalization.
    Yin C; Liu J; He B; Jia L; Gong Y; Guo H; Zhao R
    J Cell Physiol; 2019 Apr; 234(4):4787-4798. PubMed ID: 30341896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response.
    Frank G; Pressman E; Ophir R; Althan L; Shaked R; Freedman M; Shen S; Firon N
    J Exp Bot; 2009; 60(13):3891-908. PubMed ID: 19628571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.
    Cheng Q; Zhou Y; Liu Z; Zhang L; Song G; Guo Z; Wang W; Qu X; Zhu Y; Yang D
    Plant Biol (Stuttg); 2015 Mar; 17(2):419-29. PubMed ID: 25255693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.
    Moraitis C; Curran BP
    Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice.
    Lee BH; Won SH; Lee HS; Miyao M; Chung WI; Kim IJ; Jo J
    Gene; 2000 Mar; 245(2):283-90. PubMed ID: 10717479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.
    Timabud T; Yin X; Pongdontri P; Komatsu S
    J Proteomics; 2016 Feb; 133():1-19. PubMed ID: 26655677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L.
    Ortega MS; Rocha-Frigoni NAS; Mingoti GZ; Roth Z; Hansen PJ
    J Dairy Sci; 2016 Nov; 99(11):9152-9164. PubMed ID: 27614828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature.
    Mu Q; Zhang W; Zhang Y; Yan H; Liu K; Matsui T; Tian X; Yang P
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28832496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ACC deaminase-producing Brevibacterium linens RS16 enhances heat-stress tolerance of rice (Oryza sativa L.).
    Choi J; Roy Choudhury A; Walitang DI; Lee Y; Sa T
    Physiol Plant; 2022 Jan; 174(1):e13584. PubMed ID: 34625965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants.
    Bernfur K; Rutsdottir G; Emanuelsson C
    Protein Sci; 2017 Sep; 26(9):1773-1784. PubMed ID: 28608391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes.
    Qi C; Lin X; Li S; Liu L; Wang Z; Li Y; Bai R; Xie Q; Zhang N; Ren S; Zhao B; Li X; Fan S; Guo YD
    Plant Sci; 2019 Jun; 283():385-395. PubMed ID: 31128709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars.
    Raza Q; Riaz A; Bashir K; Sabar M
    Plant Mol Biol; 2020 Sep; 104(1-2):97-112. PubMed ID: 32643113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convergence of the transcriptional responses to heat shock and singlet oxygen stresses.
    Dufour YS; Imam S; Koo BM; Green HA; Donohue TJ
    PLoS Genet; 2012 Sep; 8(9):e1002929. PubMed ID: 23028346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.