BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37052355)

  • 1. Electrode Materials for Desalination of Water via Capacitive Deionization.
    Kumar S; Aldaqqa NM; Alhseinat E; Shetty D
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202302180. PubMed ID: 37052355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes.
    Elewa MM; El Batouti M; Al-Harby NF
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents.
    Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH
    Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the Ion Uptake Capacitive Deionization of Sea- and Highly Saline-Water by Sulfur and Nitrogen Co-Doped Porous Carbon Modified with Molybdenum Sulfide.
    Sharifpour H; Hekmat F; Shahrokhian S
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42568-42584. PubMed ID: 37665661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Implementation of an Electrical Characterization System for Membrane Capacitive Deionization Units for the Water Treatment.
    Leon FA; Ramos-Martin A; Santana D
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Electrochemistry of Carbon Electrodes and Faradaic Reactions in Capacitive Deionization.
    Kang JS; Kim S; Kang J; Joo H; Jang J; Jo K; Park S; Kim HI; Yoo SJ; Yoon J; Sung YE; Hatton TA
    Environ Sci Technol; 2022 Sep; 56(17):12602-12612. PubMed ID: 35998306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization.
    Shi W; Gao X; Mao J; Qian X; Liu W; Wu F; Li H; Zeng Z; Shen J; Cao X
    Front Chem; 2020; 8():415. PubMed ID: 32500060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application.
    Li Y; Qi J; Zhang W; Zhang M; Li J
    J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination.
    Liu H; Zhang J; Xu X; Wang Q
    Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of activated carbon electrode material characteristics on hardness control performance of membrane capacitive deionization.
    Yoon H; Min T; Kim SH; Lee G; Oh D; Choi DC; Kim S
    RSC Adv; 2023 Oct; 13(45):31480-31486. PubMed ID: 37901265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.