These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37052370)
1. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in Zhang Y; Wang W; Wei W; Xia L; Gao S; Zeng W; Liu S; Zhou J J Agric Food Chem; 2023 Apr; 71(16):6389-6397. PubMed ID: 37052370 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Engineering of Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819 [TBL] [Abstract][Full Text] [Related]
3. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
4. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
5. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
6. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. Ismail KS; Sakamoto T; Hasunuma T; Kondo A J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446 [TBL] [Abstract][Full Text] [Related]
7. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Divate NR; Chen GH; Wang PM; Ou BR; Chung YC Bioengineered; 2016 Nov; 7(6):445-458. PubMed ID: 27484300 [TBL] [Abstract][Full Text] [Related]
8. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice. Techaparin A; Thanonkeo P; Klanrit P Biotechnol Lett; 2017 Oct; 39(10):1521-1527. PubMed ID: 28721580 [TBL] [Abstract][Full Text] [Related]
9. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. Han JY; Seo SH; Song JM; Lee H; Choi ES J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745 [TBL] [Abstract][Full Text] [Related]
10. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. An MZ; Tang YQ; Mitsumasu K; Liu ZS; Shigeru M; Kenji K Biotechnol Lett; 2011 Jul; 33(7):1367-74. PubMed ID: 21380777 [TBL] [Abstract][Full Text] [Related]
11. Adjustment of trehalose metabolism in wine Saccharomyces cerevisiae strains to modify ethanol yields. Rossouw D; Heyns EH; Setati ME; Bosch S; Bauer FF Appl Environ Microbiol; 2013 Sep; 79(17):5197-207. PubMed ID: 23793638 [TBL] [Abstract][Full Text] [Related]
12. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Ma B; Liu M; Li ZH; Tao X; Wei DZ; Wang FQ J Agric Food Chem; 2019 Aug; 67(31):8590-8598. PubMed ID: 31287301 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
14. Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast. Son SH; Kim JE; Oh SS; Lee JY J Agric Food Chem; 2020 Apr; 68(17):4922-4929. PubMed ID: 32266810 [TBL] [Abstract][Full Text] [Related]
15. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Samakkarn W; Ratanakhanokchai K; Soontorngun N Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. Liu Z; Huang M; Chen H; Lu X; Tian Y; Hu P; Zhao Q; Li P; Li C; Ji X; Liu H Bioresour Technol; 2024 Feb; 394():130233. PubMed ID: 38141883 [TBL] [Abstract][Full Text] [Related]
17. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Gao X; Caiyin Q; Zhao F; Wu Y; Lu W J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965 [TBL] [Abstract][Full Text] [Related]
18. Engineering Wang J; Li Y; Jiang W; Hu J; Gu Z; Xu S; Zhang L; Ding Z; Chen W; Shi G J Agric Food Chem; 2023 Jun; 71(25):9804-9814. PubMed ID: 37311098 [TBL] [Abstract][Full Text] [Related]
19. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]