These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37052575)

  • 1. Equivalence of Charge Imbalance and External Electric Fields during Free Energy Calculations of Membrane Electroporation.
    Kasparyan G; Hub JS
    J Chem Theory Comput; 2023 May; 19(9):2676-2683. PubMed ID: 37052575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation.
    Kasparyan G; Hub JS
    Phys Rev Lett; 2024 Apr; 132(14):148401. PubMed ID: 38640376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of lipid membrane electroporation.
    Delemotte L; Tarek M
    J Membr Biol; 2012 Sep; 245(9):531-43. PubMed ID: 22644388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations.
    Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A
    J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation.
    Freeman SA; Wang MA; Weaver JC
    Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.
    Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M
    Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation of archaeal lipid membranes using MD simulations.
    Polak A; Tarek M; Tomšič M; Valant J; Ulrih NP; Jamnik A; Kramar P; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():18-26. PubMed ID: 24461702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study.
    Gurtovenko AA; Vattulainen I
    J Am Chem Soc; 2005 Dec; 127(50):17570-1. PubMed ID: 16351063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz Electric Field-Induced Membrane Electroporation by Molecular Dynamics Simulations.
    Tang J; Yin H; Ma J; Bo W; Yang Y; Xu J; Liu Y; Gong Y
    J Membr Biol; 2018 Dec; 251(5-6):681-693. PubMed ID: 30094474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics.
    Vaiwala R; Jadhav S; Thaokar R
    J Chem Theory Comput; 2019 Oct; 15(10):5737-5749. PubMed ID: 31430431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.
    Ho MC; Levine ZA; Vernier PT
    J Membr Biol; 2013 Nov; 246(11):793-801. PubMed ID: 23644990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2024 Oct; 1866(7):184364. PubMed ID: 38901662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.