These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37052658)
21. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging. Lin K; Cidan W; Qi Y; Wang X Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379 [TBL] [Abstract][Full Text] [Related]
22. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
23. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning. Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971 [TBL] [Abstract][Full Text] [Related]
24. Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area. Mori N; Mugikura S; Endo T; Endo H; Oguma Y; Li L; Ito A; Watanabe M; Kanamori M; Tominaga T; Takase K Neuroradiology; 2023 Feb; 65(2):257-274. PubMed ID: 36044063 [TBL] [Abstract][Full Text] [Related]
25. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
26. Differentiation Between Benign and Nonbenign Meningiomas by Using Texture Analysis From Multiparametric MRI. Ke C; Chen H; Lv X; Li H; Zhang Y; Chen M; Hu D; Ruan G; Zhang Y; Zhang Y; Liu L; Feng Y J Magn Reson Imaging; 2020 Jun; 51(6):1810-1820. PubMed ID: 31710413 [TBL] [Abstract][Full Text] [Related]
27. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
28. Research Progress of Artificial Intelligence in the Grading and Classification of Meningiomas. Gui Y; Zhang J Acad Radiol; 2024 Aug; 31(8):3346-3354. PubMed ID: 38413314 [TBL] [Abstract][Full Text] [Related]
29. Deep Learning Model for the Automated Detection and Histopathological Prediction of Meningioma. Zhang H; Mo J; Jiang H; Li Z; Hu W; Zhang C; Wang Y; Wang X; Liu C; Zhao B; Zhang J; Zhang K Neuroinformatics; 2021 Jul; 19(3):393-402. PubMed ID: 32974873 [TBL] [Abstract][Full Text] [Related]
30. Deep learning referral suggestion and tumour discrimination using explainable artificial intelligence applied to multiparametric MRI. Shin H; Park JE; Jun Y; Eo T; Lee J; Kim JE; Lee DH; Moon HH; Park SI; Kim S; Hwang D; Kim HS Eur Radiol; 2023 Aug; 33(8):5859-5870. PubMed ID: 37150781 [TBL] [Abstract][Full Text] [Related]
31. A Multiparametric Fusion Deep Learning Model Based on DCE-MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma. Gao W; Wang W; Song D; Wang K; Lian D; Yang C; Zhu K; Zheng J; Zeng M; Rao SX; Wang M J Magn Reson Imaging; 2022 Oct; 56(4):1029-1039. PubMed ID: 35191550 [TBL] [Abstract][Full Text] [Related]
32. Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram. Lin M; Lin N; Yu S; Sha Y; Zeng Y; Liu A; Niu Y Acad Radiol; 2023 Oct; 30(10):2201-2211. PubMed ID: 36925335 [TBL] [Abstract][Full Text] [Related]
33. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Sun K; Zhang J; Liu Z; Qiu Q; Gao H; Liu P; Chen K; Wei W; Wang L; Zhang J; Zhou J; Tian J Eur J Radiol; 2022 Apr; 149():110187. PubMed ID: 35183900 [TBL] [Abstract][Full Text] [Related]
34. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221 [TBL] [Abstract][Full Text] [Related]
36. Preoperative Subtyping of WHO Grade 1 Meningiomas Using a Single-Shot Ultrafast MR T2 Mapping. Li Z; Zhang H; Wang X; Yang Y; Zhang Y; Zhuang Y; Wei Z; Yang Q; Gao E; Zhang Y; Cai S; Chen Z; Cai C; Bao J; Cheng J J Magn Reson Imaging; 2024 Sep; 60(3):964-976. PubMed ID: 38112331 [TBL] [Abstract][Full Text] [Related]
37. Prediction of High-Grade Pediatric Meningiomas: Magnetic Resonance Imaging Features Based on T1-Weighted, T2-Weighted, and Contrast-Enhanced T1-Weighted Images. Li H; Zhao M; Jiao Y; Ge P; Li Z; Ma J; Wang S; Cao Y; Zhao J World Neurosurg; 2016 Jul; 91():89-95. PubMed ID: 27046015 [TBL] [Abstract][Full Text] [Related]
38. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients. He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304 [TBL] [Abstract][Full Text] [Related]
39. Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study. Li S; Zhou Z; Gao M; Liao Z; He K; Qu W; Li J; Kamel IR; Chu Q; Zhang Q; Li Z Int J Surg; 2024 Jul; 110(7):4221-4230. PubMed ID: 38573065 [TBL] [Abstract][Full Text] [Related]
40. T1 Pre- and Post-contrast Delta Histogram Parameters in Predicting the Grade of Meningioma and Their Relationship to Ki-67 Proliferation Index. Liu X; Han T; Wang Y; Liu H; Zhao Z; Deng J; Xue C; Li S; Sun Q; Zhou J Acad Radiol; 2024 Oct; 31(10):4185-4195. PubMed ID: 38653597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]