These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 37053053)

  • 1. Multi-Terrains Assistive Force Parameter Optimization Method for Soft Exoskeleton.
    Sun L; Jing J; Li C; Lu R
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2028-2036. PubMed ID: 37053053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a lower limb exoskeleton using Learning from Demonstration and an iterative Linear Quadratic Regulator Controller: A simulation study.
    Goldfarb N; Zhou H; Bales C; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4687-4693. PubMed ID: 34892259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control.
    Liang C; Hsiao T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios.
    Goffredo M; Romano P; Infarinato F; Cioeta M; Franceschini M; Galafate D; Iacopini R; Pournajaf S; Ottaviani M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From a biological template model to gait assistance with an exosuit.
    Firouzi V; Davoodi A; Bahrami F; Sharbafi MA
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34624880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton.
    Cao W; Ma Y; Chen C; Zhang J; Wu X
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):384-394. PubMed ID: 35536795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method of Detecting Human Movement Intentions in Real Environments.
    Liu YX; Wan ZY; Wang R; Gutierrez-Farewik EM
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Powered Hip Exoskeleton Improves Self-Selected Walking Speed in One Individual with Hemiparesis: A Case Study.
    Archangeli D; Ishmael MK; Lenzi T
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training.
    Changcheng C; Li YR; Chen CT
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.