These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37053054)

  • 1. Dual-Encoder VAE-GAN With Spatiotemporal Features for Emotional EEG Data Augmentation.
    Tian C; Ma Y; Cammon J; Fang F; Zhang Y; Meng M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2018-2027. PubMed ID: 37053054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
    Bao G; Yan B; Tong L; Shu J; Wang L; Yang K; Zeng Y
    Front Comput Neurosci; 2021; 15():723843. PubMed ID: 34955797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Speech Emotion Recognition With Adversarial Data Augmentation Network.
    Yi L; Mak MW
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):172-184. PubMed ID: 33035171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN.
    Luo Y; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2535-2538. PubMed ID: 30440924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional brain network identification and fMRI augmentation using a VAE-GAN framework.
    Qiang N; Gao J; Dong Q; Yue H; Liang H; Liu L; Yu J; Hu J; Zhang S; Ge B; Sun Y; Liu Z; Liu T; Li J; Song H; Zhao S
    Comput Biol Med; 2023 Oct; 165():107395. PubMed ID: 37669583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder.
    Qiang N; Dong Q; Liang H; Ge B; Zhang S; Sun Y; Zhang C; Zhang W; Gao J; Liu T
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229310
    [No Abstract]   [Full Text] [Related]  

  • 8. EEG Feature Extraction and Data Augmentation in Emotion Recognition.
    Kalashami MP; Pedram MM; Sadr H
    Comput Intell Neurosci; 2022; 2022():7028517. PubMed ID: 35387250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization.
    Hagad JL; Kimura T; Fukui KI; Numao M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emotion recognition with convolutional neural network and EEG-based EFDMs.
    Wang F; Wu S; Zhang W; Xu Z; Zhang Y; Wu C; Coleman S
    Neuropsychologia; 2020 Sep; 146():107506. PubMed ID: 32497532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based adaptive sequential data augmentation technique for the optical network traffic synthesis.
    Li J; Wang D; Li S; Zhang M; Song C; Chen X
    Opt Express; 2019 Jun; 27(13):18831-18847. PubMed ID: 31252819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TASA: Temporal Attention With Spatial Autoencoder Network for Odor-Induced Emotion Classification Using EEG.
    Tong C; Ding Y; Zhang Z; Zhang H; JunLiang Lim K; Guan C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1944-1954. PubMed ID: 38722724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).
    Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M
    Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network.
    Pan B; Zheng W
    Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.