These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37053068)

  • 1. Preference-Based Human-in-the-Loop Optimization for Perceived Realism of Haptic Rendering.
    Catkin B; Patoglu V
    IEEE Trans Haptics; 2023; 16(4):470-476. PubMed ID: 37053068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuo-Haptic Rendering of the Hand during 3D Manipulation in Augmented Reality.
    Normand E; Pacchierotti C; Marchand E; Marchal M
    IEEE Trans Haptics; 2024; 17(2):277-291. PubMed ID: 38277254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy Evaluation Method for Haptic Perceptual Similarity.
    Zhang Y; Xia R; Sun X
    IEEE Trans Haptics; 2023; 16(4):826-835. PubMed ID: 37948144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces.
    Culbertson H; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):63-74. PubMed ID: 28328499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactless Haptic Display Through Magnetic Field Control.
    Lu X; Yan Y; Qi B; Qian H; Sun J; Quigley A
    IEEE Trans Haptics; 2022; 15(2):328-338. PubMed ID: 35171776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individuals with and without Visual Impairments Use a Force Feedback Device to Identify the Friction and Hardness of Haptic Surfaces.
    Papadopoulos K; Koustriava E; Georgoula E; Kalpia V
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceived realism of haptic rendering methods for bimanual high force tasks: original and replication study.
    Lorenz M; Hoffmann A; Kaluschke M; Ziadeh T; Pillen N; Kusserow M; Perret J; Knopp S; Dettmann A; Klimant P; Zachmann G; Bullinger AC
    Sci Rep; 2023 Jul; 13(1):11230. PubMed ID: 37433815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crowd Navigation in VR: Exploring Haptic Rendering of Collisions.
    Berton F; Grzeskowiak F; Bonneau A; Jovane A; Aggravi M; Hoyet L; Olivier AH; Pacchierotti C; Pettre J
    IEEE Trans Vis Comput Graph; 2022 Jul; 28(7):2589-2601. PubMed ID: 33253117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TapeTouch: A Handheld Shape-changing Device for Haptic Display of Soft Objects.
    Zhu L; Jiang X; Shen J; Zhang H; Mo Y; Song A
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3928-3938. PubMed ID: 36048984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization-Based Wearable Tactile Rendering.
    Perez AG; Lobo D; Chinello F; Cirio G; Malvezzi M; Martin JS; Prattichizzo D; Otaduy MA
    IEEE Trans Haptics; 2017; 10(2):254-264. PubMed ID: 27775909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation.
    Dangxiao Wang ; Xin Zhang ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2013; 6(2):167-80. PubMed ID: 24808301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinesthetic washout filter for force-feedback rendering.
    Danieau F; Lecuyer A; Guillotel P; Fleureau J; Mollet N; Christie M
    IEEE Trans Haptics; 2015; 8(1):114-8. PubMed ID: 25532190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving contact realism through event-based haptic feedback.
    Kuchenbecker KJ; Fiene J; Niemeyer G
    IEEE Trans Vis Comput Graph; 2006; 12(2):219-30. PubMed ID: 16509381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rendering Dynamic Source Motion in Surface Haptics via Wave Focusing.
    Reardon G; Goetz D; Linnander M; Visell Y
    IEEE Trans Haptics; 2023; 16(4):602-608. PubMed ID: 37192024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
    Wu J; Li N; Liu W; Song G; Zhang J
    IEEE Trans Haptics; 2015; 8(4):410-20. PubMed ID: 26054074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.