These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37053205)

  • 1. A reliable and robust online validation method for creating a novel 3D Affective Virtual Environment and Event Library (AVEL).
    Mavridou I; Balaguer-Ballester E; Nduka C; Seiss E
    PLoS One; 2023; 18(4):e0278065. PubMed ID: 37053205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study.
    Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M
    J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Public Database of Immersive VR Videos with Corresponding Ratings of Arousal, Valence, and Correlations between Head Movements and Self Report Measures.
    Li BJ; Bailenson JN; Pines A; Greenleaf WJ; Williams LM
    Front Psychol; 2017; 8():2116. PubMed ID: 29259571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. User Experience Evaluation in Shared Interactive Virtual Reality.
    Guertin-Lahoud S; Coursaris CK; Sénécal S; Léger PM
    Cyberpsychol Behav Soc Netw; 2023 Apr; 26(4):263-272. PubMed ID: 37071640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience.
    Hofmann SM; Klotzsche F; Mariola A; Nikulin V; Villringer A; Gaebler M
    Elife; 2021 Oct; 10():. PubMed ID: 34708689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of aperture closure during reach-to-grasp movements in immersive haptic-free virtual reality.
    Mangalam M; Yarossi M; Furmanek MP; Tunik E
    Exp Brain Res; 2021 May; 239(5):1651-1665. PubMed ID: 33774688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Immersion and Real-World Distractions on Virtual Social Interactions.
    Oh C; Herrera F; Bailenson J
    Cyberpsychol Behav Soc Netw; 2019 Jun; 22(6):365-372. PubMed ID: 31188686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of reach-to-grasp in physical and haptic-free virtual environments.
    Furmanek MP; Schettino LF; Yarossi M; Kirkman S; Adamovich SV; Tunik E
    J Neuroeng Rehabil; 2019 Jun; 16(1):78. PubMed ID: 31248426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion and auditory virtual environments: affect-based judgments of music reproduced with virtual reverberation times.
    Västfjäll D; Larsson P; Kleiner M
    Cyberpsychol Behav; 2002 Feb; 5(1):19-32. PubMed ID: 11990972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments.
    Kalantari S; Rounds JD; Kan J; Tripathi V; Cruz-Garza JG
    Sci Rep; 2021 May; 11(1):10227. PubMed ID: 33986337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios.
    Marín-Morales J; Higuera-Trujillo JL; Guixeres J; Llinares C; Alcañiz M; Valenza G
    PLoS One; 2021; 16(7):e0254098. PubMed ID: 34197553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to Observe Users' Movements in Virtual Environments: Viewpoint Control in a Power Wheelchair Simulator.
    Alshaer A; O'Hare D; Archambault P; Shirley M; Regenbrecht H
    Hum Factors; 2020 Jun; 62(4):656-670. PubMed ID: 31306040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Database of virtual objects to be used in psychological research.
    Popic D; Pacozzi SG; Martarelli CS
    PLoS One; 2020; 15(9):e0238041. PubMed ID: 32886717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Awe in Virtual Reality: An Experimental Study.
    Chirico A; Ferrise F; Cordella L; Gaggioli A
    Front Psychol; 2017; 8():2351. PubMed ID: 29403409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.