These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37054597)
1. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. Hahn D; Han SW; Joumaa V J Biomech; 2023 May; 152():111579. PubMed ID: 37054597 [TBL] [Abstract][Full Text] [Related]
2. Residual force enhancement and force depression in human single muscle fibres. Pinnell RAM; Mashouri P; Mazara N; Weersink E; Brown SHM; Power GA J Biomech; 2019 Jun; 91():164-169. PubMed ID: 31155213 [TBL] [Abstract][Full Text] [Related]
3. Fast stretching of skeletal muscle fibres abolishes residual force enhancement. Liu S; Joumaa V; Herzog W J Exp Biol; 2022 May; 225(10):. PubMed ID: 35485194 [TBL] [Abstract][Full Text] [Related]
4. Modifiability of the history dependence of force through chronic eccentric and concentric biased resistance training. Chen J; Power GA J Appl Physiol (1985); 2019 Mar; 126(3):647-657. PubMed ID: 30571280 [TBL] [Abstract][Full Text] [Related]
5. Influence of isometric training at short and long muscle-tendon unit lengths on the history dependence of force. Hinks A; Davidson B; Akagi R; Power GA Scand J Med Sci Sports; 2021 Feb; 31(2):325-338. PubMed ID: 33038040 [TBL] [Abstract][Full Text] [Related]
6. Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase. Fortuna R; Goecking T; Seiberl W; Herzog W Physiol Rep; 2019 Aug; 7(16):e14188. PubMed ID: 31420953 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. Herzog W J Appl Physiol (1985); 2014 Jun; 116(11):1407-17. PubMed ID: 23429875 [TBL] [Abstract][Full Text] [Related]
8. Residual force enhancement following shortening is speed-dependent. Fortuna R; Power GA; Mende E; Seiberl W; Herzog W Sci Rep; 2016 Feb; 5():21513. PubMed ID: 26869508 [TBL] [Abstract][Full Text] [Related]
9. Residual and passive force enhancement in skinned cardiac fibre bundles. Boldt K; Han SW; Joumaa V; Herzog W J Biomech; 2020 Aug; 109():109953. PubMed ID: 32807325 [TBL] [Abstract][Full Text] [Related]
10. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component. Fukutani A; Herzog W Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31689920 [TBL] [Abstract][Full Text] [Related]
11. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. Herzog W; Leonard TR J Biomech; 2000 May; 33(5):531-42. PubMed ID: 10708773 [TBL] [Abstract][Full Text] [Related]
12. Differences in stretch-shortening cycle and residual force enhancement between muscles. Fukutani A; Herzog W J Biomech; 2020 Nov; 112():110040. PubMed ID: 32980750 [TBL] [Abstract][Full Text] [Related]
13. Considerations on the history dependence of muscle contraction. Rassier DE; Herzog W J Appl Physiol (1985); 2004 Feb; 96(2):419-27. PubMed ID: 14715673 [TBL] [Abstract][Full Text] [Related]
14. The influence of training-induced sarcomerogenesis on the history dependence of force. Chen J; Mashouri P; Fontyn S; Valvano M; Elliott-Mohamed S; Noonan AM; Brown SHM; Power GA J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32561632 [TBL] [Abstract][Full Text] [Related]
15. Force enhancement following stretch in a single sarcomere. Leonard TR; DuVall M; Herzog W Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251 [TBL] [Abstract][Full Text] [Related]
16. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. Nishikawa K J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330 [TBL] [Abstract][Full Text] [Related]
17. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T Front Physiol; 2020; 11():921. PubMed ID: 32848862 [TBL] [Abstract][Full Text] [Related]
18. Is titin a 'winding filament'? A new twist on muscle contraction. Nishikawa KC; Monroy JA; Uyeno TE; Yeo SH; Pai DK; Lindstedt SL Proc Biol Sci; 2012 Mar; 279(1730):981-90. PubMed ID: 21900329 [TBL] [Abstract][Full Text] [Related]
19. The role of titin in eccentric muscle contraction. Herzog W J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914 [TBL] [Abstract][Full Text] [Related]
20. A low-cost 2-D sarcomere model to demonstrate titin-related mechanisms for force production. Baptista de Oliveira Medeiros H; de Brito Fontana H; Herzog W Adv Physiol Educ; 2024 Mar; 48(1):92-96. PubMed ID: 38059284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]