BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37054610)

  • 1. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO
    Liu X; Ji B; Li A
    Water Res; 2023 Jun; 236():119960. PubMed ID: 37054610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community.
    Cho DH; Ramanan R; Heo J; Lee J; Kim BH; Oh HM; Kim HS
    Bioresour Technol; 2015 Jan; 175():578-85. PubMed ID: 25459870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An auto-flocculation strategy for Chlorella vulgaris.
    Shen Y; Fan Z; Chen C; Xu X
    Biotechnol Lett; 2015 Jan; 37(1):75-80. PubMed ID: 25208747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry.
    Li H; Wang Z; Feng T; Guo Y; Lv J; Li N; Liu X; Liu J
    Environ Pollut; 2023 Dec; 338():122718. PubMed ID: 37821041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential interactive effect on biomass and bio-polymeric substances of microalgal-bacterial aerobic granular sludge as a valuable resource for sustainable development.
    Fard MB; Wu D
    Bioresour Technol; 2023 May; 376():128929. PubMed ID: 36940876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors governing microalgae harvesting efficiency by flocculation using cationic polymers.
    Vu HP; Nguyen LN; Emmerton B; Wang Q; Ralph PJ; Nghiem LD
    Bioresour Technol; 2021 Nov; 340():125669. PubMed ID: 34339996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment.
    Qv M; Dai D; Liu D; Wu Q; Tang C; Li S; Zhu L
    Bioresour Technol; 2023 Feb; 370():128574. PubMed ID: 36603749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation, control of bacterial contamination, and enhanced lipid accumulation by driving nutrient starvation in coupled wastewater treatment and Chlorella regularis cultivation.
    Zhou D; Li Y; Yang Y; Wang Y; Zhang C; Wang D
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1531-41. PubMed ID: 25520170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.
    Wang Y; Yang Y; Ma F; Xuan L; Xu Y; Huo H; Zhou D; Dong S
    Lett Appl Microbiol; 2015 May; 60(5):497-503. PubMed ID: 25693426
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wang H; Wu P; Zheng D; Deng L; Wang W
    Environ Sci Technol; 2022 Sep; 56(17):12645-12655. PubMed ID: 35881886
    [No Abstract]   [Full Text] [Related]  

  • 12. Extracellular polymeric substances of bacteria and their potential environmental applications.
    More TT; Yadav JS; Yan S; Tyagi RD; Surampalli RY
    J Environ Manage; 2014 Nov; 144():1-25. PubMed ID: 24907407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of microalgae-bacteria symbiosis system for enhanced treatment of biogas slurry.
    Yan H; Lu R; Liu Y; Cui X; Wang Y; Yu Z; Ruan R; Zhang Q
    Bioresour Technol; 2022 Jun; 354():127187. PubMed ID: 35439556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance.
    Medina M; Neis U
    Water Sci Technol; 2007; 55(11):165-71. PubMed ID: 17591209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.
    Nguyen TDP; Le TVA; Show PL; Nguyen TT; Tran MH; Tran TNT; Lee SY
    Bioresour Technol; 2019 Jan; 272():34-39. PubMed ID: 30308405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant: Promoting surfactant-assisted flocculation through pH adjustment.
    Taghavijeloudar M; Kebria DY; Yaqoubnejad P
    Bioresour Technol; 2021 Jan; 319():124224. PubMed ID: 33254453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium.
    Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F
    J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation.
    Zhang B; Guo Y; Lens PNL; Zhang Z; Shi W; Cui F; Tay JH
    Sci Total Environ; 2019 Apr; 659():372-383. PubMed ID: 30599356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater.
    Tang CC; Zhang X; He ZW; Tian Y; Wang XC
    Bioresour Technol; 2021 Jul; 331():125010. PubMed ID: 33773415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge.
    Peng T; Wang Y; Wang J; Fang F; Yan P; Liu Z
    Chemosphere; 2022 Sep; 303(Pt 2):135116. PubMed ID: 35623422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.