BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37054785)

  • 1. Model-based assessment and mapping of total phosphorus enrichment in rivers with sparse reference data.
    Esselman PC; Stevenson RJ
    Sci Total Environ; 2023 Aug; 884():163418. PubMed ID: 37054785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments.
    Kreiling RM; Bartsch LA; Perner PM; Hlavacek EJ; Christensen VG
    Environ Manage; 2021 Aug; 68(2):279-293. PubMed ID: 34105016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controls on nutrients across a prairie stream watershed: land use and riparian cover effects.
    Dodds WK; Oakes RM
    Environ Manage; 2006 May; 37(5):634-46. PubMed ID: 16485163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of reference conditions for nutrients in an intensive agricultural watershed, Eastern China.
    Chen J; Lu J
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2496-505. PubMed ID: 24081922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.
    Tromboni F; Dodds WK
    Environ Manage; 2017 Jul; 60(1):30-40. PubMed ID: 28405753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Granular measures of agricultural land use influence lake nitrogen and phosphorus differently at macroscales.
    Stachelek J; Weng W; Carey CC; Kemanian AR; Cobourn KM; Wagner T; Weathers KC; Soranno PA
    Ecol Appl; 2020 Dec; 30(8):e02187. PubMed ID: 32485044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
    Jabbar FK; Grote K
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of spatial scale and soil permeability on relationships between land cover and baseflow stream nutrient concentrations.
    Daniel FB; Griffith MB; Troyer ME
    Environ Manage; 2010 Feb; 45(2):336-50. PubMed ID: 19956950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding.
    Smucker NJ; Pilgrim EM; Wu H; Nietch CT; Darling JA; Molina M; Johnson BR; Yuan LL
    Sci Total Environ; 2022 Jul; 831():154960. PubMed ID: 35378187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating reference nutrient criteria for Maryland ecoregions.
    Morgan RP; Kline KM; Churchill JB
    Environ Monit Assess; 2013 Mar; 185(3):2123-37. PubMed ID: 22644126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion.
    Zhang W; Pueppke SG; Li H; Geng J; Diao Y; Hyndman DW
    Environ Pollut; 2019 Dec; 255(Pt 2):113273. PubMed ID: 31627173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient concentrations in Maryland non-tidal streams.
    Morgan RP; Kline KM
    Environ Monit Assess; 2011 Jul; 178(1-4):221-35. PubMed ID: 20890788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land cover impacts on storm flow suspended solid and nutrient concentrations in southwest Ohio streams.
    Lazar JA; Spahr R; Grudzinski BP; Fisher TJ
    Water Environ Res; 2019 Jun; 91(6):510-522. PubMed ID: 30667123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland.
    O'Reagain PJ; Brodie J; Fraser G; Bushell JJ; Holloway CH; Faithful JW; Haynes D
    Mar Pollut Bull; 2005; 51(1-4):37-50. PubMed ID: 15757706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modeling.
    Wang W; Zhang F; Zhao Q; Liu C; Jim CY; Johnson VC; Tan ML
    J Environ Manage; 2023 Oct; 343():118249. PubMed ID: 37245314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model.
    Xu G; Fan H; Oliver DM; Dai Y; Li H; Shi Y; Long H; Xiong K; Zhao Z
    Environ Res; 2022 Nov; 214(Pt 4):113843. PubMed ID: 35931190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Relationship between Land Use and Vulnerability to Nitrogen and Phosphorus Pollution in an Urban Watershed.
    Tasdighi A; Arabi M; Osmond DL
    J Environ Qual; 2017 Jan; 46(1):113-122. PubMed ID: 28177402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical habitat in conterminous US streams and rivers, Part 1: Geoclimatic controls and anthropogenic alteration.
    Kaufmann PR; Hughes RM; Paulsen SG; Peck DV; Seeliger CW; Weber MH; Mitchell RM
    Ecol Indic; 2022 Aug; 141():109046. PubMed ID: 35991319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.