BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37054899)

  • 21. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons.
    Hasan S; Fernandopulle MS; Humble SW; Frankenfield AM; Li H; Prestil R; Johnson KR; Ryan BJ; Wade-Martins R; Ward ME; Hao L
    Mol Neurodegener; 2023 Nov; 18(1):87. PubMed ID: 37974165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneity within a large kindred with frontotemporal dementia: a novel progranulin mutation.
    Bruni AC; Momeni P; Bernardi L; Tomaino C; Frangipane F; Elder J; Kawarai T; Sato C; Pradella S; Wakutani Y; Anfossi M; Gallo M; Geracitano S; Costanzo A; Smirne N; Curcio SA; Mirabelli M; Puccio G; Colao R; Maletta RG; Kertesz A; St George-Hyslop P; Hardy J; Rogaeva E
    Neurology; 2007 Jul; 69(2):140-7. PubMed ID: 17620546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core features of frontotemporal dementia recapitulated in progranulin knockout mice.
    Ghoshal N; Dearborn JT; Wozniak DF; Cairns NJ
    Neurobiol Dis; 2012 Jan; 45(1):395-408. PubMed ID: 21933710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells.
    Lines G; Casey JM; Preza E; Wray S
    Mol Cell Neurosci; 2020 Dec; 109():103553. PubMed ID: 32956830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.
    Almeida S; Gao F; Coppola G; Gao FB
    Neurobiol Aging; 2016 Jun; 42():35-40. PubMed ID: 27143419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.
    Baker M; Mackenzie IR; Pickering-Brown SM; Gass J; Rademakers R; Lindholm C; Snowden J; Adamson J; Sadovnick AD; Rollinson S; Cannon A; Dwosh E; Neary D; Melquist S; Richardson A; Dickson D; Berger Z; Eriksen J; Robinson T; Zehr C; Dickey CA; Crook R; McGowan E; Mann D; Boeve B; Feldman H; Hutton M
    Nature; 2006 Aug; 442(7105):916-9. PubMed ID: 16862116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia.
    Holler CJ; Taylor G; McEachin ZT; Deng Q; Watkins WJ; Hudson K; Easley CA; Hu WT; Hales CM; Rossoll W; Bassell GJ; Kukar T
    Mol Neurodegener; 2016 Jun; 11(1):46. PubMed ID: 27341800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights and therapeutic opportunities for progranulin-deficient frontotemporal dementia.
    Amin S; Carling G; Gan L
    Curr Opin Neurobiol; 2022 Feb; 72():131-139. PubMed ID: 34826653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Splice-Acceptor Site Mutation in GRN (c.709-2 A>T) Causes Frontotemporal Dementia Spectrum in a Large Family from Southern Italy.
    Sassi C; Capozzo R; Gibbs R; Crews C; Zecca C; Arcuti S; Copetti M; Barulli MR; Brescia V; Singleton AB; Logroscino G
    J Alzheimers Dis; 2016 May; 53(2):475-85. PubMed ID: 27258413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia.
    van Swieten JC; Heutink P
    Lancet Neurol; 2008 Oct; 7(10):965-74. PubMed ID: 18771956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Progranulin Gene Mutations in Portuguese Patients with Frontotemporal Dementia.
    Almeida MR; Tábuas-Pereira M; Baldeiras I; Lima M; Durães J; Massano J; Pinto M; Cruto C; Santana I
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration.
    Yu CE; Bird TD; Bekris LM; Montine TJ; Leverenz JB; Steinbart E; Galloway NM; Feldman H; Woltjer R; Miller CA; Wood EM; Grossman M; McCluskey L; Clark CM; Neumann M; Danek A; Galasko DR; Arnold SE; Chen-Plotkin A; Karydas A; Miller BL; Trojanowski JQ; Lee VM; Schellenberg GD; Van Deerlin VM
    Arch Neurol; 2010 Feb; 67(2):161-70. PubMed ID: 20142524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia.
    Arrant AE; Filiano AJ; Unger DE; Young AH; Roberson ED
    Brain; 2017 May; 140(5):1447-1465. PubMed ID: 28379303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct cell type-specific protein signatures in GRN and MAPT genetic subtypes of frontotemporal dementia.
    Miedema SSM; Mol MO; Koopmans FTW; Hondius DC; van Nierop P; Menden K; de Veij Mestdagh CF; van Rooij J; Ganz AB; Paliukhovich I; Melhem S; Li KW; Holstege H; Rizzu P; van Kesteren RE; van Swieten JC; Heutink P; Smit AB
    Acta Neuropathol Commun; 2022 Jul; 10(1):100. PubMed ID: 35799292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preclinical Interventions in Mouse Models of Frontotemporal Dementia Due to Progranulin Mutations.
    Kashyap SN; Boyle NR; Roberson ED
    Neurotherapeutics; 2023 Jan; 20(1):140-153. PubMed ID: 36781744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype.
    Woollacott IOC; Nicholas JM; Heller C; Foiani MS; Moore KM; Russell LL; Paterson RW; Keshavan A; Schott JM; Warren JD; Heslegrave A; Zetterberg H; Rohrer JD
    Dement Geriatr Cogn Disord; 2020; 49(1):56-76. PubMed ID: 32344399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD.
    Wu Y; Shao W; Todd TW; Tong J; Yue M; Koga S; Castanedes-Casey M; Librero AL; Lee CW; Mackenzie IR; Dickson DW; Zhang YJ; Petrucelli L; Prudencio M
    Cell Rep; 2021 Aug; 36(8):109581. PubMed ID: 34433069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency.
    Lee WC; Almeida S; Prudencio M; Caulfield TR; Zhang YJ; Tay WM; Bauer PO; Chew J; Sasaguri H; Jansen-West KR; Gendron TF; Stetler CT; Finch N; Mackenzie IR; Rademakers R; Gao FB; Petrucelli L
    Hum Mol Genet; 2014 Mar; 23(6):1467-78. PubMed ID: 24163244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia.
    Krabbe G; Minami SS; Etchegaray JI; Taneja P; Djukic B; Davalos D; Le D; Lo I; Zhan L; Reichert MC; Sayed F; Merlini M; Ward ME; Perry DC; Lee SE; Sias A; Parkhurst CN; Gan WB; Akassoglou K; Miller BL; Farese RV; Gan L
    Proc Natl Acad Sci U S A; 2017 May; 114(19):5029-5034. PubMed ID: 28438992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyses MAPT, GRN, and C9orf72 mutations in Chinese patients with frontotemporal dementia.
    Tang M; Gu X; Wei J; Jiao B; Zhou L; Zhou Y; Weng L; Yan X; Tang B; Xu J; Shen L
    Neurobiol Aging; 2016 Oct; 46():235.e11-5. PubMed ID: 27311648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.