These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37054967)

  • 1. Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering.
    Wichmann J; Behrendt G; Boecker S; Klamt S
    Metab Eng; 2023 May; 77():199-207. PubMed ID: 37054967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli.
    Boecker S; Zahoor A; Schramm T; Link H; Klamt S
    Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli.
    Hädicke O; Bettenbrock K; Klamt S
    Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli.
    Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S
    Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an oxygen-dependent inducible promoter, the nar promoter of Escherichia coli, to utilize in metabolic engineering.
    Han SJ; Chang HN; Lee J
    Biotechnol Bioeng; 2001 Mar; 72(5):573-6. PubMed ID: 11460248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and application of synthetic
    Hwang HJ; Lee SY; Lee PC
    Biotechnol Biofuels; 2018; 11():103. PubMed ID: 29636821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an oxygen-dependent inducible promoter, the Escherichia coli nar promoter, in gram-negative host strains.
    Lee KH; Cho MH; Chung T; Chang HN; Lim SH; Lee J
    Biotechnol Bioeng; 2003 May; 82(3):271-7. PubMed ID: 12599253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions.
    Millard P; Pérochon J; Létisse F
    Appl Environ Microbiol; 2021 Jul; 87(16):e0071921. PubMed ID: 34047632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a systems level understanding of the oxygen response of Escherichia coli.
    Bettenbrock K; Bai H; Ederer M; Green J; Hellingwerf KJ; Holcombe M; Kunz S; Rolfe MD; Sanguinetti G; Sawodny O; Sharma P; Steinsiek S; Poole RK
    Adv Microb Physiol; 2014; 64():65-114. PubMed ID: 24797925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression.
    Zhang R; Cao Y; Liu W; Xian M; Liu H
    Microb Cell Fact; 2017 Dec; 16(1):227. PubMed ID: 29258595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production.
    Zahoor A; Messerschmidt K; Boecker S; Klamt S
    Biotechnol Biofuels; 2020 Nov; 13(1):185. PubMed ID: 33292464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Endogenous and Reduced Promoters for Oxygen-Limited Processes Using Escherichia coli.
    Lara AR; Jaén KE; Sigala JC; Mühlmann M; Regestein L; Büchs J
    ACS Synth Biol; 2017 Feb; 6(2):344-356. PubMed ID: 27715021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Dynamic Regulation to Increase L-Phenylalanine Production in
    Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D
    J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency production of 5-aminovalerate in engineered Escherichia coli controlled by an anaerobically-induced nirB promoter.
    Cheng J; Tu W; Cao R; Gou X; Zhang Y; Wang D; Li Q
    Biochem Biophys Res Commun; 2021 May; 552():170-175. PubMed ID: 33751934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.