These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37055121)
1. Body size, not species identity, drives body heating in alpine Erebia butterflies. Kleckova I; Okrouhlík J; Svozil T; Matos-Maraví P; Klecka J J Therm Biol; 2023 Apr; 113():103502. PubMed ID: 37055121 [TBL] [Abstract][Full Text] [Related]
2. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. Kleckova I; Konvicka M; Klecka J J Therm Biol; 2014 Apr; 41():50-8. PubMed ID: 24679972 [TBL] [Abstract][Full Text] [Related]
3. Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia. Kleckova I; Klecka J PLoS One; 2016; 11(3):e0150393. PubMed ID: 27008409 [TBL] [Abstract][Full Text] [Related]
4. Cool Bands: Wing bands decrease rate of heating, but not equilibrium temperature in Anartia fatima. Brashears J; Aiello A; Seymoure BM J Therm Biol; 2016 Feb; 56():100-8. PubMed ID: 26857983 [TBL] [Abstract][Full Text] [Related]
5. Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains. Konvicka M; Kuras T; Liparova J; Slezak V; Horázná D; Klečka J; Kleckova I PeerJ; 2021; 9():e12021. PubMed ID: 34532158 [TBL] [Abstract][Full Text] [Related]
6. Not Too Warm, Not Too Cold: Thermal Treatments to Slightly Warmer or Colder Conditions from Mother's Origin Can Enhance Performance of Montane Butterfly Larvae. Zografou K; Adamidis GC; Sewall BJ; Grill A Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741436 [TBL] [Abstract][Full Text] [Related]
7. Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies. Laird-Hopkins BC; Ashe-Jepson E; Basset Y; Arizala Cobo S; Eberhardt L; Freiberga I; Hellon J; Hitchcock GE; Kleckova I; Linke D; Lamarre GPA; McFarlane A; Savage AF; Turner EC; Zamora AC; Sam K; Bladon AJ Glob Chang Biol; 2023 Aug; 29(15):4180-4192. PubMed ID: 37315654 [TBL] [Abstract][Full Text] [Related]
9. Regional differences in thermoregulation between two European butterfly communities. Toro-Delgado E; Vila R; Talavera G; Turner EC; Hayes MP; Horrocks NPC; Bladon AJ J Anim Ecol; 2024 Feb; 93(2):183-195. PubMed ID: 38192015 [TBL] [Abstract][Full Text] [Related]
10. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. Bladon AJ; Lewis M; Bladon EK; Buckton SJ; Corbett S; Ewing SR; Hayes MP; Hitchcock GE; Knock R; Lucas C; McVeigh A; Menéndez R; Walker JM; Fayle TM; Turner EC J Anim Ecol; 2020 Nov; 89(11):2440-2450. PubMed ID: 32969021 [TBL] [Abstract][Full Text] [Related]
11. Reverse altitudinal cline in cold hardiness among Erebia butterflies. Vrba P; Konvicka M; Nedved O Cryo Letters; 2012; 33(4):251-8. PubMed ID: 22987236 [TBL] [Abstract][Full Text] [Related]
12. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats? Ehl S; Dalstein V; Tull F; Gros P; Schmitt T Insect Sci; 2018 Feb; 25(1):161-171. PubMed ID: 27628710 [TBL] [Abstract][Full Text] [Related]
13. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus. De Keyser R; Breuker CJ; Hails RS; Dennis RL; Shreeve TG PLoS One; 2015; 10(4):e0122623. PubMed ID: 25923738 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. Carnicer J; Stefanescu C; Vives-Ingla M; López C; Cortizas S; Wheat C; Vila R; Llusià J; Peñuelas J J Anim Ecol; 2019 Mar; 88(3):376-391. PubMed ID: 30480313 [TBL] [Abstract][Full Text] [Related]
15. Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase. Ashe-Jepson E; Arizala Cobo S; Basset Y; Bladon AJ; Kleckova I; Laird-Hopkins BC; Mcfarlane A; Sam K; Savage AF; Zamora AC; Turner EC; Lamarre GPA J Anim Ecol; 2023 Sep; 92(9):1759-1770. PubMed ID: 37438871 [TBL] [Abstract][Full Text] [Related]
16. Phylogeography, genetic structure and wing pattern variation of Erebia pronoe (Esper, 1780) (Lepidoptera: Nymphalidae) in Europe. PauČulovÁ L; Dzurinka M; ŠemelÁkovÁ M; CsanÁdy A; Panigaj Ľ Zootaxa; 2018 Jun; 4441(2):279-297. PubMed ID: 30314010 [TBL] [Abstract][Full Text] [Related]
17. Effects of recent and past climatic shifts on the genetic structure of the high mountain yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem. Schmitt T; Habel JC; Rödder D; Louy D Glob Chang Biol; 2014 Jul; 20(7):2045-61. PubMed ID: 24753365 [TBL] [Abstract][Full Text] [Related]
18. Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria. Berwaerts K; Van Dyck H Oecologia; 2004 Nov; 141(3):536-45. PubMed ID: 15309609 [TBL] [Abstract][Full Text] [Related]
19. Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants. Kerner JM; Krauss J; Maihoff F; Bofinger L; Classen A Ecology; 2023 Jan; 104(1):e3848. PubMed ID: 36366785 [TBL] [Abstract][Full Text] [Related]
20. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Davies WJ Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]