These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37055121)

  • 21. Color, iridescence, and thermoregulation in Lepidoptera.
    Bosi SG; Hayes J; Large MC; Poladian L
    Appl Opt; 2008 Oct; 47(29):5235-41. PubMed ID: 18846161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly.
    Barton M; Porter W; Kearney M
    J Therm Biol; 2014 Apr; 41():65-71. PubMed ID: 24679974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microclimate buffering and thermal tolerance across elevations in a tropical butterfly.
    Montejo-Kovacevich G; Martin SH; Meier JI; Bacquet CN; Monllor M; Jiggins CD; Nadeau NJ
    J Exp Biol; 2020 Apr; 223(Pt 8):. PubMed ID: 32165433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment.
    Kuussaari M; Saarinen M; Korpela EL; Pöyry J; Hyvönen T
    Ecol Evol; 2014 Oct; 4(19):3800-11. PubMed ID: 25614794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures.
    Senior RA
    J Anim Ecol; 2020 Nov; 89(11):2392-2396. PubMed ID: 33460111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testing biennialism in the butterfly Erebia palarica (Nymphalidae: Satyrinae) by mtDNA sequencing.
    Vila M; Björklund M
    Insect Mol Biol; 2004 Apr; 13(2):213-7. PubMed ID: 15056369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Arctic butterflies become smaller with rising temperatures.
    Bowden JJ; Eskildsen A; Hansen RR; Olsen K; Kurle CM; Høye TT
    Biol Lett; 2015 Oct; 11(10):. PubMed ID: 26445981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate predicts both visible and near-infrared reflectance in butterflies.
    Kang C; Im S; Lee WY; Choi Y; Stuart-Fox D; Huertas B
    Ecol Lett; 2021 Sep; 24(9):1869-1879. PubMed ID: 34174001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air temperature drives the evolution of mid-infrared optical properties of butterfly wings.
    Krishna A; Nie X; Briscoe AD; Lee J
    Sci Rep; 2021 Dec; 11(1):24143. PubMed ID: 34921152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary contact rather than coexistence-Erebia butterflies in the Alps.
    Augustijnen H; Patsiou T; Lucek K
    Evolution; 2022 Nov; 76(11):2669-2686. PubMed ID: 36117267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geographic divergence in upper thermal limits across insect life stages: does behavior matter?
    MacLean HJ; Higgins JK; Buckley LB; Kingsolver JG
    Oecologia; 2016 May; 181(1):107-14. PubMed ID: 26849879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Out of the alps: the biogeography of a disjunctly distributed mountain butterfly, the almond-eyed ringlet Erebia alberganus (Lepidoptera, Satyrinae).
    Louy D; Habel JC; Ulrich W; Schmitt T
    J Hered; 2014; 105(1):28-38. PubMed ID: 24286723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of butterflies to structural and resource boundaries.
    Schultz CB; Franco AM; Crone EE
    J Anim Ecol; 2012 May; 81(3):724-34. PubMed ID: 22272654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infrared optical and thermal properties of microstructures in butterfly wings.
    Krishna A; Nie X; Warren AD; Llorente-Bousquets JE; Briscoe AD; Lee J
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1566-1572. PubMed ID: 31919285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example.
    Schmitt T; Hewitt GM; Müller P
    J Evol Biol; 2006 Jan; 19(1):108-13. PubMed ID: 16405582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forest stratification shapes allometry and flight morphology of tropical butterflies.
    Mena S; Kozak KM; Cárdenas RE; Checa MF
    Proc Biol Sci; 2020 Oct; 287(1937):20201071. PubMed ID: 33081613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Day-flying lepidoptera larvae have a poorer ability to thermoregulate than adults.
    Ashe-Jepson E; Hayes MP; Hitchcock GE; Wingader K; Turner EC; Bladon AJ
    Ecol Evol; 2023 Oct; 13(10):e10623. PubMed ID: 37854314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engaging the Community in Pollinator Research: The Effect of Wing Pattern and Weather on Butterfly Behavior.
    Merrill AN; Hirzel GE; Murphy MJ; Imrie RG; Westerman EL
    Integr Comp Biol; 2021 Oct; 61(3):1039-1054. PubMed ID: 34196361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cool habitats support darker and bigger butterflies in Australian tropical forests.
    Xing S; Bonebrake TC; Tang CC; Pickett EJ; Cheng W; Greenspan SE; Williams SE; Scheffers BR
    Ecol Evol; 2016 Nov; 6(22):8062-8074. PubMed ID: 27878078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.