These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 37055475)
21. Targeted transfer learning to improve performance in small medical physics datasets. Romero M; Interian Y; Solberg T; Valdes G Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112 [TBL] [Abstract][Full Text] [Related]
22. Effective methods of diabetic retinopathy detection based on deep convolutional neural networks. Gu Y; Wang X; Pan J; Yong Z; Guo S; Pan T; Jiao Y; Zhou Z Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2177-2187. PubMed ID: 34606059 [TBL] [Abstract][Full Text] [Related]
23. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
24. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704 [TBL] [Abstract][Full Text] [Related]
25. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
26. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490 [TBL] [Abstract][Full Text] [Related]
27. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
28. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease. Chaurasia BK; Raj H; Rathour SS; Singh PB Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285 [TBL] [Abstract][Full Text] [Related]
29. Federated Learning for Diabetic Retinopathy Detection in a Multi-center Fundus Screening Network. Matta S; Hassine MB; Lecat C; Borderie L; Guilcher AL; Massin P; Cochener B; Lamard M; Quellec G Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082571 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. González-Gonzalo C; Sánchez-Gutiérrez V; Hernández-Martínez P; Contreras I; Lechanteur YT; Domanian A; van Ginneken B; Sánchez CI Acta Ophthalmol; 2020 Jun; 98(4):368-377. PubMed ID: 31773912 [TBL] [Abstract][Full Text] [Related]
31. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
32. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Abràmoff MD; Lou Y; Erginay A; Clarida W; Amelon R; Folk JC; Niemeijer M Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5200-5206. PubMed ID: 27701631 [TBL] [Abstract][Full Text] [Related]
33. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
34. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169 [TBL] [Abstract][Full Text] [Related]
35. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers. Gayathri S; Gopi VP; Palanisamy P Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015 [TBL] [Abstract][Full Text] [Related]
36. Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. Farooq MS; Arooj A; Alroobaea R; Baqasah AM; Jabarulla MY; Singh D; Sardar R Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270949 [TBL] [Abstract][Full Text] [Related]
37. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]