These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 37055475)
61. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model. Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396 [TBL] [Abstract][Full Text] [Related]
62. CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning. Cho K; Kim KD; Nam Y; Jeong J; Kim J; Choi C; Lee S; Lee JS; Woo S; Hong GS; Seo JB; Kim N J Digit Imaging; 2023 Jun; 36(3):902-910. PubMed ID: 36702988 [TBL] [Abstract][Full Text] [Related]
63. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images. Tayebi Arasteh S; Misera L; Kather JN; Truhn D; Nebelung S Eur Radiol Exp; 2024 Feb; 8(1):10. PubMed ID: 38326501 [TBL] [Abstract][Full Text] [Related]
64. Towards implementation of AI in New Zealand national diabetic screening program: Cloud-based, robust, and bespoke. Xie L; Yang S; Squirrell D; Vaghefi E PLoS One; 2020; 15(4):e0225015. PubMed ID: 32275656 [TBL] [Abstract][Full Text] [Related]
65. Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning. Holste G; Oikonomou EK; Mortazavi BJ; Wang Z; Khera R Commun Med (Lond); 2024 Jul; 4(1):133. PubMed ID: 38971887 [TBL] [Abstract][Full Text] [Related]
66. Classification of diabetic retinopathy using unlabeled data and knowledge distillation. Abbasi S; Hajabdollahi M; Khadivi P; Karimi N; Roshandel R; Shirani S; Samavi S Artif Intell Med; 2021 Nov; 121():102176. PubMed ID: 34763798 [TBL] [Abstract][Full Text] [Related]
67. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning. Burlina P; Paul W; Liu TYA; Bressler NM JAMA Ophthalmol; 2022 Feb; 140(2):185-189. PubMed ID: 34967890 [TBL] [Abstract][Full Text] [Related]
68. Two Eyes Are Better Than One: Exploiting Binocular Correlation for Diabetic Retinopathy Severity Grading. Qian P; Zhao Z; Chen C; Zeng Z; Li X Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2115-2118. PubMed ID: 34891706 [TBL] [Abstract][Full Text] [Related]
69. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images. Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854 [TBL] [Abstract][Full Text] [Related]
70. Vision Transformer-based recognition of diabetic retinopathy grade. Wu J; Hu R; Xiao Z; Chen J; Liu J Med Phys; 2021 Dec; 48(12):7850-7863. PubMed ID: 34693536 [TBL] [Abstract][Full Text] [Related]
71. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886 [TBL] [Abstract][Full Text] [Related]
72. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. Hsieh YT; Chuang LM; Jiang YD; Chang TJ; Yang CM; Yang CH; Chan LW; Kao TY; Chen TC; Lin HC; Tsai CH; Chen M J Formos Med Assoc; 2021 Jan; 120(1 Pt 1):165-171. PubMed ID: 32307321 [TBL] [Abstract][Full Text] [Related]
73. Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Lo J; Yu TT; Ma D; Zang P; Owen JP; Zhang Q; Wang RK; Beg MF; Lee AY; Jia Y; Sarunic MV Ophthalmol Sci; 2021 Dec; 1(4):100069. PubMed ID: 36246944 [TBL] [Abstract][Full Text] [Related]
74. Investigating Contrastive Pair Learning's Frontiers in Supervised, Semisupervised, and Self-Supervised Learning. Sabiri B; Khtira A; El Asri B; Rhanoui M J Imaging; 2024 Aug; 10(8):. PubMed ID: 39194985 [TBL] [Abstract][Full Text] [Related]
75. Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment. Rêgo S; Dutra-Medeiros M; Soares F; Monteiro-Soares M Ophthalmologica; 2021; 244(3):250-257. PubMed ID: 33120397 [TBL] [Abstract][Full Text] [Related]
76. Semantic-Oriented Visual Prompt Learning for Diabetic Retinopathy Grading on Fundus Images. Zhang Y; Ma X; Huang K; Li M; Heng PA IEEE Trans Med Imaging; 2024 Aug; 43(8):2960-2969. PubMed ID: 38564346 [TBL] [Abstract][Full Text] [Related]
77. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
78. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665 [TBL] [Abstract][Full Text] [Related]
79. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images. Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325 [TBL] [Abstract][Full Text] [Related]