These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37055999)

  • 21. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.
    Tufano KJ; Reyes C; Saltikov CW; Fendorf S
    Environ Sci Technol; 2008 Nov; 42(22):8283-9. PubMed ID: 19068807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC; Picardal FF; Coby AJ
    Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fate and Transport of Pharmaceuticals in Iron and Manganese Binary Oxide Coated Sand Columns.
    Luo T; Pokharel R; Chen T; Boily JF; Hanna K
    Environ Sci Technol; 2023 Jan; 57(1):214-221. PubMed ID: 36469013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.
    Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C
    J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrogenic Carbon Improves Cd Retention during Microbial Transformation of Ferrihydrite under Varying Redox Conditions.
    Yu W; Chu C; Chen B
    Environ Sci Technol; 2023 May; 57(20):7875-7885. PubMed ID: 37171251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides.
    Pang C; Li Y; Wu H; Deng Z; Yuan S; Tan W
    J Environ Radioact; 2024 Feb; 272():107367. PubMed ID: 38171110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. As(III) oxidation by MnO
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2017 Mar; 111():41-51. PubMed ID: 28040540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).
    Lan S; Ying H; Wang X; Liu F; Tan W; Huang Q; Zhang J; Feng X
    Water Res; 2018 Jan; 128():92-101. PubMed ID: 29091808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methyl arsenic adsorption and desorption behavior on iron oxides.
    Lafferty BJ; Loeppert RH
    Environ Sci Technol; 2005 Apr; 39(7):2120-7. PubMed ID: 15871246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase transformation of Cr(VI)-adsorbed ferrihydrite in the presence of Mn(II): Fate of Mn(II) and Cr(VI).
    Ding Z; Sun G; Fu F; Ye C
    J Environ Sci (China); 2022 Mar; 113():251-259. PubMed ID: 34963533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of Fe-As composites formed with As(V) and aged ferrihydrite.
    Yang Z; Bai L; Su S; Wang Y; Wu C; Zeng X; Sun B
    J Environ Sci (China); 2021 Feb; 100():43-50. PubMed ID: 33279052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization and redistribution process of As(V) during As(V)-bearing ferrihydrite reduction by Geobacter sulfurreducens under the influence of TiO
    Yi X; Huang S; Chang L; Wang Z; Wang Y
    J Hazard Mater; 2022 Feb; 423(Pt B):127178. PubMed ID: 34534805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions.
    An W; Wu C; Xue S; Liu Z; Liu M; Li W
    Chemosphere; 2022 Mar; 291(Pt 3):133126. PubMed ID: 34861266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions.
    Aeppli M; Voegelin A; Gorski CA; Hofstetter TB; Sander M
    Environ Sci Technol; 2018 Jan; 52(2):560-570. PubMed ID: 29200267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Reduced Sulfur in the Transformation of Cd(II) Immobilized by δ-MnO
    Sun Q; Cui P; Wu S; Liu C; Fan T; Alves ME; Cheng H; Huang M; Zhou D; Wang Y
    Environ Sci Technol; 2020 Dec; 54(23):14955-14963. PubMed ID: 33175488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.