These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37056251)
1. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Park K; Kim S; Jo Y; Park J; Kim I; Hwang S; Lee Y; Kim SY; Seo J Bioact Mater; 2023 Jul; 25():555-568. PubMed ID: 37056251 [TBL] [Abstract][Full Text] [Related]
2. Slippery lubricant-infused silica nanoparticulate film processing for anti-biofouling applications. Li Sip YY; Jacobs A; Morales A; Sun M; Roberson LB; Hummerick ME; Roy H; Kik P; Zhai L J Appl Biomater Funct Mater; 2023; 21():22808000231184688. PubMed ID: 37680075 [TBL] [Abstract][Full Text] [Related]
3. Robust anti-infective multilayer coatings with rapid self-healing property. Zhou C; Zhou J; Ma X; Pranantyo D; Li J; Xu L; Truong VX Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111828. PubMed ID: 33579468 [TBL] [Abstract][Full Text] [Related]
4. Universal and Stable Slippery Coatings: Chemical Combination Induced Adhesive-Lubricant Cooperation. Wang D; Chen Y; Huang Y; Bai H; Tan Y; Gao P; Deng X; Xia F; Jiang L Small; 2022 Aug; 18(32):e2203057. PubMed ID: 35843880 [TBL] [Abstract][Full Text] [Related]
5. Lubricant-Infused Surfaces with Built-In Functional Biomolecules Exhibit Simultaneous Repellency and Tunable Cell Adhesion. Badv M; Imani SM; Weitz JI; Didar TF ACS Nano; 2018 Nov; 12(11):10890-10902. PubMed ID: 30352507 [TBL] [Abstract][Full Text] [Related]
6. Substrate independent coating formation and anti-biofouling performance improvement of mussel inspired polydopamine. Dang Y; Xing CM; Quan M; Wang YB; Zhang SP; Shi SQ; Gong YK J Mater Chem B; 2015 May; 3(20):4181-4190. PubMed ID: 32262295 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional "Hydrogel Skins" on Diverse Polymers with Arbitrary Shapes. Yu Y; Yuk H; Parada GA; Wu Y; Liu X; Nabzdyk CS; Youcef-Toumi K; Zang J; Zhao X Adv Mater; 2019 Feb; 31(7):e1807101. PubMed ID: 30570776 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114 [TBL] [Abstract][Full Text] [Related]
9. Antibiotic-Impregnated Liquid-Infused Coatings Suppress the Formation of Methicillin-Resistant Villegas M; Alonso-Cantu C; Rahmani S; Wilson D; Hosseinidoust Z; Didar TF ACS Appl Mater Interfaces; 2021 Jun; 13(24):27774-27783. PubMed ID: 34115463 [TBL] [Abstract][Full Text] [Related]
10. Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties. Lee Y; Chung YW; Park J; Park K; Seo Y; Hong SN; Lee SH; Jeon H; Seo J Sci Rep; 2020 Oct; 10(1):17454. PubMed ID: 33060752 [TBL] [Abstract][Full Text] [Related]
11. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability. Li H; Feng X; Peng Y; Zeng R Nanoscale; 2020 Apr; 12(14):7700-7711. PubMed ID: 32211633 [TBL] [Abstract][Full Text] [Related]
12. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization. Fan YJ; Pham MT; Huang CJ Langmuir; 2019 Feb; 35(5):1642-1651. PubMed ID: 30114915 [TBL] [Abstract][Full Text] [Related]
13. Slippery liquid-infused porous surfaces with inclined microstructures to enhance durable anti-biofouling performances. Cai G; Liu F; Wu T Colloids Surf B Biointerfaces; 2021 Jun; 202():111667. PubMed ID: 33706164 [TBL] [Abstract][Full Text] [Related]
15. Bio-functionalization of biomedical metals. Xiao M; Chen YM; Biao MN; Zhang XD; Yang BC Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1057-1070. PubMed ID: 27772705 [TBL] [Abstract][Full Text] [Related]
16. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Leslie DC; Waterhouse A; Berthet JB; Valentin TM; Watters AL; Jain A; Kim P; Hatton BD; Nedder A; Donovan K; Super EH; Howell C; Johnson CP; Vu TL; Bolgen DE; Rifai S; Hansen AR; Aizenberg M; Super M; Aizenberg J; Ingber DE Nat Biotechnol; 2014 Nov; 32(11):1134-40. PubMed ID: 25306244 [TBL] [Abstract][Full Text] [Related]
18. Universal surface modification using dopamine-hyaluronic acid conjugates for anti-biofouling. Lee S; Kim S; Park J; Lee JY Int J Biol Macromol; 2020 May; 151():1314-1321. PubMed ID: 31751701 [TBL] [Abstract][Full Text] [Related]
19. Suppression of Biofouling on a Permeable Membrane for Dissolved Oxygen Sensing Using a Lubricant-Infused Coating. Osborne M; Aryasomayajula A; Shakeri A; Selvaganapathy PR; Didar TF ACS Sens; 2019 Mar; 4(3):687-693. PubMed ID: 30793884 [TBL] [Abstract][Full Text] [Related]
20. Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Czuba U; Quintana R; Lassaux P; Bombera R; Ceccone G; Bañuls-Ciscar J; Moreno-Couranjou M; Detrembleur C; Choquet P Colloids Surf B Biointerfaces; 2019 Jun; 178():120-128. PubMed ID: 30852263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]