These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 37056292)
1. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion. Arısoy YM; Criales LE; Özel T; Lane B; Moylan S; Donmez A Int J Adv Manuf Technol; 2017; 90(5-8):. PubMed ID: 37056292 [TBL] [Abstract][Full Text] [Related]
2. Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Criales LE; Arısoy YM; Lane B; Moylan S; Donmez A; Özel T Addit Manuf; 2017 Jan; 13():. PubMed ID: 38487077 [TBL] [Abstract][Full Text] [Related]
3. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
5. Influence of Laser Powder Bed Fusion Process Parameters on Voids, Cracks, and Microhardness of Nickel-Based Superalloy Alloy 247LC. Adegoke O; Andersson J; Brodin H; Pederson R Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859031 [TBL] [Abstract][Full Text] [Related]
6. On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion. Chen X; Qiu C Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258223 [TBL] [Abstract][Full Text] [Related]
7. Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy. Kurdi A; Aldoshan A; Alshabouna F; Alodadi A; Degnah A; Alnaser H; Tabbakh T; Basak AK Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984263 [TBL] [Abstract][Full Text] [Related]
8. Machinability of INCONEL718 Alloy with a Porous Microstructure Produced by Laser Melting Powder Bed Fusion at Higher Energy Densities. Wood P; Díaz-Álvarez A; Díaz-Álvarez J; Miguélez MH; Rusinek A; Gunputh UF; Williams G; Bahi S; Sienkiewicz J; Płatek P Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33334067 [TBL] [Abstract][Full Text] [Related]
9. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400 [TBL] [Abstract][Full Text] [Related]
10. Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process. Kluczyński J; Sarzyński B; Dražan T; Łuszczek J; Kosturek R; Szachogłuchowicz I Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274774 [TBL] [Abstract][Full Text] [Related]
11. Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni. Kahlert M; Wegener T; Laabs L; Vollmer M; Niendorf T Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274705 [TBL] [Abstract][Full Text] [Related]
12. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
13. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Zhang S; Lane B; Whiting J; Chou K J Manuf Process; 2019; 47():. PubMed ID: 32855624 [TBL] [Abstract][Full Text] [Related]
14. Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties. Großwendt F; Becker L; Röttger A; Chehreh AB; Strauch AL; Uhlenwinkel V; Lentz J; Walther F; Fechte-Heinen R; Weber S; Theisen W Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361268 [TBL] [Abstract][Full Text] [Related]
15. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M). Huber F; Bartels D; Schmidt M Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096 [TBL] [Abstract][Full Text] [Related]
16. Machine learning to determine the main factors affecting creep rates in laser powder bed fusion. Sanchez S; Rengasamy D; Hyde CJ; Figueredo GP; Rothwell B J Intell Manuf; 2021; 32(8):2353-2373. PubMed ID: 34720456 [TBL] [Abstract][Full Text] [Related]
17. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting. Deng J; Chen C; Zhang W; Li Y; Li R; Zhou K Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027909 [TBL] [Abstract][Full Text] [Related]
18. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. McGregor M; Patel S; McLachlin S; Vlasea M Data Brief; 2021 Dec; 39():107633. PubMed ID: 34917699 [TBL] [Abstract][Full Text] [Related]
19. Nano-Mechanical Behavior of Ti6Al4V Alloy Manufactured Using Laser Powder Bed Fusion. Liović D; Franulović M; Kamenar E; Kozak D Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374525 [TBL] [Abstract][Full Text] [Related]
20. Material Characterisation and Computational Thermal Modelling of Electron Beam Powder Bed Fusion Additive Manufacturing of Ti2448 Titanium Alloy. Wang Q; Zhang W; Li S; Tong M; Hou W; Wang H; Hao Y; Harrison NM; Yang R Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]