These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37056974)

  • 1. Reinforcement effect in tandemly sulfonated, partially fluorinated polyphenylene PEMs for fuel cells.
    Guo L; Masuda A; Miyatake K
    RSC Adv; 2023 Apr; 13(16):11225-11233. PubMed ID: 37056974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforced Polyphenylene Ionomer Membranes Exhibiting High Fuel Cell Performance and Mechanical Durability.
    Miyake J; Watanabe T; Shintani H; Sugawara Y; Uchida M; Miyatake K
    ACS Mater Au; 2021 Sep; 1(1):81-88. PubMed ID: 36855620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ePTFE reinforced, sulfonated aromatic polymer membranes enable durable, high-temperature operable PEMFCs.
    Long Z; Miyatake K
    iScience; 2021 Sep; 24(9):102962. PubMed ID: 34458706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-conductive aromatic membranes reinforced with poly(vinylidene fluoride) nanofibers for high-performance durable fuel cells.
    Liu F; Kim IS; Miyatake K
    Sci Adv; 2023 Jul; 9(30):eadg9057. PubMed ID: 37494437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Fuel Cell Operable at 120 °C Using Polyphenlyene Ionomer Membranes with Improved Interfacial Compatibility.
    Long Z; Miyatake K
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15366-15372. PubMed ID: 33755439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Polyethylene Supports in Reinforcement of Multiblock Hydrocarbon Ionomers for Proton Exchange Membranes.
    Lee CJ; Hong SJ; Song J; Yoon KS; Oh KH; Lee JY; Yoon SJ; Hong YT; Lee SY; Yu DM; So S
    Langmuir; 2023 Dec; 39(51):18834-18845. PubMed ID: 38091527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes.
    Adamski M; Skalski TJG; Britton B; Peckham TJ; Metzler L; Holdcroft S
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9058-9061. PubMed ID: 28609604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.
    Kim HK; Zhang G; Nam C; Chung TC
    Membranes (Basel); 2015 Dec; 5(4):875-87. PubMed ID: 26690232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for synthesis and characterization of ePTFE reinforced, sulfonated polyphenylene in the application to proton exchange membrane fuel cells.
    Long Z; Miyatake K
    STAR Protoc; 2022 Mar; 3(1):101049. PubMed ID: 34977688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly durable proton exchange membranes for low temperature fuel cells.
    Tang H; Pan M; Wang F; Shen PK; Jiang SP
    J Phys Chem B; 2007 Aug; 111(30):8684-90. PubMed ID: 17628100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Proton-Conducting Membranes Based on Poly(arylene ether)s with Densely Sulfonated and Partially Fluorinated Multiphenyl for Fuel Cell Applications.
    Huang TS; Hsieh TL; Lai CC; Wen HY; Huang WY; Chang MY
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
    Miyake J; Taki R; Mochizuki T; Shimizu R; Akiyama R; Uchida M; Miyatake K
    Sci Adv; 2017 Oct; 3(10):eaao0476. PubMed ID: 29075671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications.
    Kim M; Ko H; Nam SY; Kim K
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.
    Yin C; Li J; Zhou Y; Zhang H; Fang P; He C
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionomer Membranes Produced from Hexaarylbenzene-Based Partially Fluorinated Poly(arylene ether) Blends for Proton Exchange Membrane Fuel Cells.
    Huang TS; Wen HY; Chen YY; Hung PH; Hsieh TL; Huang WY; Chang MY
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells.
    Vinothkannan M; Kim AR; Gnana Kumar G; Yoo DJ
    RSC Adv; 2018 Feb; 8(14):7494-7508. PubMed ID: 35539095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched Sulfonimide-Based Proton Exchange Polymer Membranes from Poly(Phenylenebenzopheneone)s for Fuel Cell Applications.
    Sutradhar SC; Yoon S; Ryu T; Jin L; Zhang W; Kim W; Jang H
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33673539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.