BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37057038)

  • 1. Computer Assisted Objective Assessment of Micro-Neurosurgical Skills From Intraoperative Videos.
    Deepika P; Deepesh KVV; Vadali PS; Rao M; Vazhayil V; Uppar AM
    IEEE Open J Eng Med Biol; 2023; 4():11-20. PubMed ID: 37057038
    [No Abstract]   [Full Text] [Related]  

  • 2. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation.
    Davids J; Makariou SG; Ashrafian H; Darzi A; Marcus HJ; Giannarou S
    World Neurosurg; 2021 May; 149():e669-e686. PubMed ID: 33588081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsurgical Tool Detection and Characterization in Intra-operative Neurosurgical Videos.
    Ramesh A; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2676-2681. PubMed ID: 34891803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility Study of the Low-Cost Motion Tracking System for Assessing Endoscope Holding Skills.
    Zhenzhu L; Lu L; Zhenzhi L; Xuzhi L; Yizhi L; Gangxian F; Henglu W; Jinke D; Qingbo W; Pengfei L; Meng L; Jianmin L; Zefu L
    World Neurosurg; 2020 Aug; 140():312-319. PubMed ID: 32376376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.
    AlZhrani G; Alotaibi F; Azarnoush H; Winkler-Schwartz A; Sabbagh A; Bajunaid K; Lajoie SP; Del Maestro RF
    J Surg Educ; 2015; 72(4):685-96. PubMed ID: 25687956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using artificial intelligence to quantify dynamic retraction of brain tissue and the manipulation of instruments in neurosurgery.
    Martin T; El Hage G; Shedid D; Bojanowski MW
    Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1469-1478. PubMed ID: 36598652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Microsurgical Tool Segmentation and Characterization in Intra-Operative Neurosurgical Videos.
    Deepika P; Udupa K; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2110-2114. PubMed ID: 36086279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construct validity of the ProMIS laparoscopic simulator.
    Pellen MG; Horgan LF; Barton JR; Attwood SE
    Surg Endosc; 2009 Jan; 23(1):130-9. PubMed ID: 18648875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automation of surgical skill assessment using a three-stage machine learning algorithm.
    Lavanchy JL; Zindel J; Kirtac K; Twick I; Hosgor E; Candinas D; Beldi G
    Sci Rep; 2021 Mar; 11(1):5197. PubMed ID: 33664317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurosurgical Skills Assessment: Measuring Technical Proficiency in Neurosurgery Residents Through Intraoperative Video Evaluations.
    Sarkiss CA; Philemond S; Lee J; Sobotka S; Holloway TD; Moore MM; Costa AB; Gordon EL; Bederson JB
    World Neurosurg; 2016 May; 89():1-8. PubMed ID: 26724633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment.
    Vedula SS; Malpani A; Ahmidi N; Khudanpur S; Hager G; Chen CC
    J Surg Educ; 2016; 73(3):482-9. PubMed ID: 26896147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A software-based tool for video motion tracking in the surgical skills assessment landscape.
    Ganni S; Botden SMBI; Chmarra M; Goossens RHM; Jakimowicz JJ
    Surg Endosc; 2018 Jun; 32(6):2994-2999. PubMed ID: 29340824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(27):1-118. PubMed ID: 23074405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical instrument detection and tracking technologies: Automating dataset labeling for surgical skill assessment.
    Nema S; Vachhani L
    Front Robot AI; 2022; 9():1030846. PubMed ID: 36405072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laparoscopic training using a quantitative assessment and instructional system.
    Yamaguchi T; Nakamura R
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1453-1461. PubMed ID: 29705826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Minimally Invasive Suturing Skills: Is Instrument Tracking an Accurate Prediction?
    Verhoeven DJ; Hillemans V; Leijte E; Verhoeven BH; Botden SMBI
    J Laparoendosc Adv Surg Tech A; 2023 Feb; 33(2):137-145. PubMed ID: 35900263
    [No Abstract]   [Full Text] [Related]  

  • 17. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty.
    Ahmidi N; Poddar P; Jones JD; Vedula SS; Ishii L; Hager GD; Ishii M
    Int J Comput Assist Radiol Surg; 2015 Jun; 10(6):981-91. PubMed ID: 25895080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data.
    Ahmidi N; Ishii M; Fichtinger G; Gallia GL; Hager GD
    Int Forum Allergy Rhinol; 2012 Nov; 2(6):507-15. PubMed ID: 22696449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery.
    Ahmidi N; Hager GD; Ishii L; Fichtinger G; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):295-302. PubMed ID: 20879412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurosurgical performance between experts and trainees: Evidence from drilling task.
    Chainey J; O'Kelly CJ; Kim MJ; Zheng B
    Int J Med Robot; 2021 Oct; 17(5):e2313. PubMed ID: 34288358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.