These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37057729)

  • 1. Evaluation of Models for Estimating Hydraulic Conductivity in Glacial Aquifers with NMR Logging.
    Kendrick AK; Knight R; Johnson CD; Liu G; Hart DJ; Butler JJ; Hunt RJ
    Ground Water; 2023; 61(6):778-792. PubMed ID: 37057729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of NMR Logging for Estimating Hydraulic Conductivity in Glacial Aquifers.
    Kendrick AK; Knight R; Johnson CD; Liu G; Knobbe S; Hunt RJ; Butler JJ
    Ground Water; 2021 Jan; 59(1):31-48. PubMed ID: 32390161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.
    Knight R; Walsh DO; Butler JJ; Grunewald E; Liu G; Parsekian AD; Reboulet EC; Knobbe S; Barrows M
    Ground Water; 2016 Jan; 54(1):104-14. PubMed ID: 25810149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bootstrap calibration and uncertainty estimation of downhole NMR hydraulic conductivity estimates in an unconsolidated aquifer.
    Parsekian AD; Dlubac K; Grunewald E; Butler JJ; Knight R; Walsh DO
    Ground Water; 2015; 53(1):111-21. PubMed ID: 24520904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.
    Ren S; Parsekian AD; Zhang Y; Carr BJ
    Ground Water; 2019 Mar; 57(2):303-319. PubMed ID: 29766497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic Conductivity from Nuclear Magnetic Resonance Logs in Sediments with Elevated Magnetic Susceptibilities.
    Crow H; Paradis D; Grunewald E; Liang XX; Russell HAJ
    Ground Water; 2022 May; 60(3):377-392. PubMed ID: 34905215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small-diameter NMR logging tool for groundwater investigations.
    Walsh D; Turner P; Grunewald E; Zhang H; Butler JJ; Reboulet E; Knobbe S; Christy T; Lane JW; Johnson CD; Munday T; Fitzpatrick A
    Ground Water; 2013; 51(6):914-26. PubMed ID: 23425428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction.
    Medici G; West LJ
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43050-43063. PubMed ID: 34125385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Hydraulic Conductivity Estimates from Various Approaches with Groundwater Flow Models.
    Sun D; Luo N; Vandenhoff A; McCall W; Zhao Z; Wang C; Rudolph DL; Illman WA
    Ground Water; 2024; 62(3):384-404. PubMed ID: 37605321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration.
    Knowling MJ; Werner AD
    Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of vertical variations in hydraulic conductivity in unconsolidated sediments.
    Dietze M; Dietrich P
    Ground Water; 2012; 50(3):450-6. PubMed ID: 21883188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of aquifer hydraulic conductivity and transmissivity of Ezza/Ikwo area, Southeastern Nigeria, using pumping test and surficial resistivity techniques.
    Oli IC; Opara AI; Okeke OC; Akaolisa CZ; Akakuru OC; Osi-Okeke I; Udeh HM
    Environ Monit Assess; 2022 Sep; 194(10):719. PubMed ID: 36053394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
    Sanchez-León E; Leven C; Haslauer CP; Cirpka OA
    Ground Water; 2016 Jul; 54(4):498-507. PubMed ID: 26441342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site.
    Berg SJ; Illman WA
    Ground Water; 2015; 53(1):71-89. PubMed ID: 24428358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing hydraulic conductivity with the direct-push permeameter.
    Butler JJ; Dietrich P; Wittig V; Christy T
    Ground Water; 2007; 45(4):409-19. PubMed ID: 17600571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vertical hydraulic conductivity of an aquitard at two spatial scales.
    Hart DJ; Bradbury KR; Feinstein DT
    Ground Water; 2006; 44(2):201-11. PubMed ID: 16556202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into permeability determination by coupling Stoneley wave propagation and conventional petrophysical logs in carbonate oil reservoirs.
    Rostami A; Kordavani A; Parchekhari S; Hemmati-Sarapardeh A; Helalizadeh A
    Sci Rep; 2022 Jul; 12(1):11618. PubMed ID: 35804036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability profiles in granular aquifers using flowmeters in direct-push wells.
    Paradis D; Lefebvre R; Morin RH; Gloaguen E
    Ground Water; 2011; 49(4):534-47. PubMed ID: 20880040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.