BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37057989)

  • 1. Direct Observation of Grain-Boundary-Migration-Assisted Radiation Damage Healing in Ultrafine Grained Gold under Mechanical Stress.
    Stangebye S; Ding K; Zhang Y; Lang E; Hattar K; Zhu T; Kacher J; Pierron O
    Nano Lett; 2023 Apr; 23(8):3282-3290. PubMed ID: 37057989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels.
    Etienne A; Radiguet B; Cunningham NJ; Odette GR; Valiev R; Pareige P
    Ultramicroscopy; 2011 May; 111(6):659-63. PubMed ID: 21216102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.
    Vetterick GA; Gruber J; Suri PK; Baldwin JK; Kirk MA; Baldo P; Wang YQ; Misra A; Tucker GJ; Taheri ML
    Sci Rep; 2017 Sep; 7(1):12275. PubMed ID: 28947751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.
    El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP
    Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ TEM measurement of activation volume in ultrafine grained gold.
    Gupta S; Stangebye S; Jungjohann K; Boyce B; Zhu T; Kacher J; Pierron ON
    Nanoscale; 2020 Apr; 12(13):7146-7158. PubMed ID: 32193521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ TEM Observation of Cooperative Grain Rotations and the Bauschinger Effect in Nanocrystalline Palladium.
    Kashiwar A; Hahn H; Kübel C
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary.
    Wei J; Feng B; Tochigi E; Shibata N; Ikuhara Y
    Nat Commun; 2022 Mar; 13(1):1455. PubMed ID: 35304472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties for irradiated face-centred cubic nanocrystalline metals.
    Xiao XZ; Song DK; Chu HJ; Xue JM; Duan HL
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140832. PubMed ID: 27547091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Radiation Tolerances of Ultrafine-Grained Zirconia-Magnesia Composite Ceramics with Different Grain Sizes.
    Qin W; Hong M; Wang Y; Tang J; Cai G; Yin R; Ruan X; Yang B; Jiang C; Ren F
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438471
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    El Atwani O; Unal K; Cunningham WS; Fensin S; Hinks J; Greaves G; Maloy S
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient Crystal Plasticity: A Grain Boundary Model for Slip Transmission.
    Peng XL; Huang GY; Bargmann S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31731654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct experimental determination of grain boundary excess volume in metals.
    Steyskal EM; Oberdorfer B; Sprengel W; Zehetbauer M; Pippan R; Würschum R
    Phys Rev Lett; 2012 Feb; 108(5):055504. PubMed ID: 22400941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twinning-assisted dynamic adjustment of grain boundary mobility.
    Huang Q; Zhu Q; Chen Y; Gong M; Li J; Zhang Z; Yang W; Wang J; Zhou H; Wang J
    Nat Commun; 2021 Nov; 12(1):6695. PubMed ID: 34795234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Pseudoelasticity in Metallic Nanocrystals by Grain Boundary Engineering.
    Deng H; Chen Y; Zhu Q; Zhao Q; Huang Q; Wang J; Zhou H
    Nano Lett; 2024 Feb; 24(8):2511-2519. PubMed ID: 38373158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of twin-assisted grain growth in nanometer-scaled metal.
    He S; Wang C; Qi L; Ye H; Du K
    Micron; 2020 Apr; 131():102825. PubMed ID: 31951939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd
    Chen J; Ryu GH; Sinha S; Warner JH
    ACS Nano; 2019 Jul; 13(7):8256-8264. PubMed ID: 31241313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.