These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37058285)

  • 1. Dielectric Saturation in Water from a Long-Range Machine Learning Model.
    Dhattarwal HS; Gao A; Remsing RC
    J Phys Chem B; 2023 Apr; 127(16):3663-3671. PubMed ID: 37058285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials.
    Joll K; Schienbein P; Rosso KM; Blumberger J
    Nat Commun; 2024 Sep; 15(1):8192. PubMed ID: 39294144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating long-range physics in atomic-scale machine learning.
    Grisafi A; Ceriotti M
    J Chem Phys; 2019 Nov; 151(20):204105. PubMed ID: 31779318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularized by Physics: Graph Neural Network Parametrized Potentials for the Description of Intermolecular Interactions.
    Thürlemann M; Böselt L; Riniker S
    J Chem Theory Comput; 2023 Jan; 19(2):562-79. PubMed ID: 36633918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the reliability of machine learned potentials for modeling inhomogeneous liquids.
    Fazel K; Karimitari N; Shah T; Sutton C; Sundararaman R
    J Comput Chem; 2024 Aug; 45(21):1821-1828. PubMed ID: 38662330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional transferability of deep learning potentials: a case study for LiCl-KCl melt.
    Zakiryanov D
    J Mol Model; 2024 Jul; 30(8):283. PubMed ID: 39060545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric Constant of Liquid Water Determined with Neural Network Quantum Molecular Dynamics.
    Krishnamoorthy A; Nomura KI; Baradwaj N; Shimamura K; Rajak P; Mishra A; Fukushima S; Shimojo F; Kalia R; Nakano A; Vashishta P
    Phys Rev Lett; 2021 May; 126(21):216403. PubMed ID: 34114857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TorchMD: A Deep Learning Framework for Molecular Simulations.
    Doerr S; Majewski M; Pérez A; Krämer A; Clementi C; Noe F; Giorgino T; De Fabritiis G
    J Chem Theory Comput; 2021 Apr; 17(4):2355-2363. PubMed ID: 33729795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer.
    Schran C; Brieuc F; Marx D
    J Chem Phys; 2021 Feb; 154(5):051101. PubMed ID: 33557570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric response with short-ranged electrostatics.
    Cox SJ
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19746-19752. PubMed ID: 32747576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new force field of formamide and the effect of the dielectric constant on miscibility.
    de la Luz AP; Méndez-Maldonado GA; Núñez-Rojas E; Bresme F; Alejandre J
    J Chem Theory Comput; 2015 Jun; 11(6):2792-800. PubMed ID: 26575572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear dielectric effects in liquids: a guided tour.
    Richert R
    J Phys Condens Matter; 2017 Sep; 29(36):363001. PubMed ID: 28665294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many-body interactions and deep neural network potentials for water.
    Zhai Y; Rashmi R; Palos E; Paesani F
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38587225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending machine learning beyond interatomic potentials for predicting molecular properties.
    Fedik N; Zubatyuk R; Kulichenko M; Lubbers N; Smith JS; Nebgen B; Messerly R; Li YW; Boldyrev AI; Barros K; Isayev O; Tretiak S
    Nat Rev Chem; 2022 Sep; 6(9):653-672. PubMed ID: 37117713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.