BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37058407)

  • 21. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae.
    Dobi KC; Winston F
    Mol Cell Biol; 2007 Aug; 27(15):5575-86. PubMed ID: 17526727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae.
    Sugihara F; Kasahara K; Kokubo T
    Nucleic Acids Res; 2011 Jan; 39(1):59-75. PubMed ID: 20805245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAGA Is a General Cofactor for RNA Polymerase II Transcription.
    Baptista T; Grünberg S; Minoungou N; Koster MJE; Timmers HTM; Hahn S; Devys D; Tora L
    Mol Cell; 2017 Oct; 68(1):130-143.e5. PubMed ID: 28918903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kin28 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in Saccharomyces cerevisiae.
    Knoll ER; Zhu ZI; Sarkar D; Landsman D; Morse RH
    Nucleic Acids Res; 2020 May; 48(8):4244-4255. PubMed ID: 32182349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Connection of core and tail Mediator modules restrains transcription from TFIID-dependent promoters.
    Saleh MM; Jeronimo C; Robert F; Zentner GE
    PLoS Genet; 2021 Aug; 17(8):e1009529. PubMed ID: 34383744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation.
    van Oevelen CJ; van Teeffelen HA; Timmers HT
    Mol Cell Biol; 2005 Jun; 25(12):4863-72. PubMed ID: 15923605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.
    Erb I; van Nimwegen E
    PLoS One; 2011; 6(9):e24279. PubMed ID: 21931670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Role for Mediator Core in Limiting Coactivator Recruitment in
    Yarrington RM; Yu Y; Yan C; Bai L; Stillman DJ
    Genetics; 2020 Jun; 215(2):407-420. PubMed ID: 32327563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of core promoter elements: the downstream core element is recognized by TAF1.
    Lee DH; Gershenzon N; Gupta M; Ioshikhes IP; Reinberg D; Lewis BA
    Mol Cell Biol; 2005 Nov; 25(21):9674-86. PubMed ID: 16227614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3.
    Zhang H; Reese JC
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8833-8. PubMed ID: 17502614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP.
    Ben-Shem A; Papai G; Schultz P
    FEBS J; 2021 May; 288(10):3135-3147. PubMed ID: 32946670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.
    Walker AK; Shi Y; Blackwell TK
    J Biol Chem; 2004 Apr; 279(15):15339-47. PubMed ID: 14726532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of the SAGA and TFIID coactivator complexes in transcriptional dysregulation caused by the separation of core and tail Mediator modules.
    Saleh MM; Hundley HA; Zentner GE
    G3 (Bethesda); 2022 Dec; 12(12):. PubMed ID: 36331351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription.
    Layer JH; Weil PA
    J Biol Chem; 2013 Aug; 288(32):23273-94. PubMed ID: 23814059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements.
    Anish R; Hossain MB; Jacobson RH; Takada S
    PLoS One; 2009; 4(4):e5103. PubMed ID: 19337366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters.
    Ohtsuki K; Kasahara K; Shirahige K; Kokubo T
    Nucleic Acids Res; 2010 Apr; 38(6):1805-20. PubMed ID: 20026583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator.
    Shen WC; Green MR
    Cell; 1997 Aug; 90(4):615-24. PubMed ID: 9288742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating transcription through development of semi-synthetic yeast core promoters.
    Decoene T; De Maeseneire SL; De Mey M
    PLoS One; 2019; 14(11):e0224476. PubMed ID: 31689317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1.
    Martinez-Campa C; Politis P; Moreau JL; Kent N; Goodall J; Mellor J; Goding CR
    Mol Cell; 2004 Jul; 15(1):69-81. PubMed ID: 15225549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID.
    Nakatani Y; Horikoshi M; Brenner M; Yamamoto T; Besnard F; Roeder RG; Freese E
    Nature; 1990 Nov; 348(6296):86-8. PubMed ID: 2234067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.