These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37058618)

  • 1. A Survey of Transoral Robotic Mechanisms: Distal Dexterity, Variable Stiffness, and Triangulation.
    Gu X; Ren H
    Cyborg Bionic Syst; 2023; 4():0007. PubMed ID: 37058618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery.
    Li C; Gu X; Xiao X; Lim CM; Ren H
    Med Biol Eng Comput; 2020 Sep; 58(9):2063-2069. PubMed ID: 32642908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism.
    Gu X; Li C; Xiao X; Lim CM; Ren H
    Ann Biomed Eng; 2019 Jun; 47(6):1329-1344. PubMed ID: 30863909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of robotic systems for transoral head and neck surgery.
    Poon H; Li C; Gao W; Ren H; Lim CM
    Oral Oncol; 2018 Dec; 87():82-88. PubMed ID: 30527249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery.
    Jiang S; Chen B; Qi F; Cao Y; Ju F; Bai D; Wang Y
    Int J Med Robot; 2020 Apr; 16(2):e2081. PubMed ID: 31955492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and experiments of a continuum robotic system for transoral laryngeal surgery.
    Feng F; Zhou Y; Hong W; Li K; Xie L
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):497-505. PubMed ID: 35028888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transoral surgery for laryngo-pharyngeal cancer - The paradigm shift of the head and cancer treatment.
    Tateya I; Shiotani A; Satou Y; Tomifuji M; Morita S; Muto M; Ito J
    Auris Nasus Larynx; 2016 Feb; 43(1):21-32. PubMed ID: 26298233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Assisted Endoscopic Resection: Current Status and Future Directions.
    Kaan HL; Ho KY
    Gut Liver; 2020 Mar; 14(2):150-152. PubMed ID: 31158954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Workspace and dexterity analysis of the hybrid mechanism master robot in Sina
    Aghanouri M; Moradi H; Alibeik HA; Mirbagheri A
    Int J Med Robot; 2024 Feb; 20(1):e2608. PubMed ID: 38536715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery.
    Ding J; Goldman RE; Xu K; Allen PK; Fowler DL; Simaan N
    IEEE ASME Trans Mechatron; 2013 Oct; ():1612-1624. PubMed ID: 23963105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment outcomes of transoral robotic and non-robotic surgeries to treat oropharyngeal, hypopharyngeal, and supraglottic squamous cell carcinoma: A multi-center retrospective observational study in Japan.
    Sano D; Shimizu A; Tateya I; Fujiwara K; Mori T; Miyamoto S; Nishikawa D; Terada T; Yasumatsu R; Ueda T; Matsumoto F; Kishimoto Y; Maruo T; Fujimoto Y; Tsukahara K; Yoshimoto S; Nibu KI; Oridate N
    Auris Nasus Larynx; 2021 Jun; 48(3):502-510. PubMed ID: 33632582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transoral robotic surgery (TORS) in Japan: procedures, advantages and current status.
    Sano D; Tateya I; Hori R; Ueda T; Mori T; Maruo T; Tsukahara K; Oridate N;
    Jpn J Clin Oncol; 2024 Mar; 54(3):248-253. PubMed ID: 38061912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.
    Schuler PJ; Hoffmann TK; Veit JA; Rotter N; Friedrich DT; Greve J; Scheithauer MO
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27196407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the EndoMaster robot-assisted surgical system in transoral robotic surgery: A cadaveric study.
    Tay G; Tan HK; Nguyen TK; Phee SJ; Iyer NG
    Int J Med Robot; 2018 Aug; 14(4):e1930. PubMed ID: 29869407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transoral robotic surgery for sellar tumors: first clinical study.
    Chauvet D; Hans S; Missistrano A; Rebours C; Bakkouri WE; Lot G
    J Neurosurg; 2017 Oct; 127(4):941-948. PubMed ID: 28009229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Status of Transoral Surgery for Patients With Early-Stage Pharyngeal and Laryngeal Cancers in Japan.
    Sano D; Shimizu A; Tateya I; Fujiwara K; Kishimoto Y; Maruo T; Fujimoto Y; Mori T; Kato H; Tsukahara K; Oridate N
    Front Oncol; 2021; 11():804933. PubMed ID: 34970501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic-Assisted Transrectal Cholecystectomy in a Porcine Model.
    Foo CC; Yeung CK; Sreedhar B; Cheung JL; Law WL
    Surg Innov; 2019 Aug; 26(4):436-441. PubMed ID: 30755092
    [No Abstract]   [Full Text] [Related]  

  • 18. [Application progress of transoral robotic surgery in treatment of laryngeal cancer].
    Huang GJ; Liu HB; Zhang JX; Luo MS; Zhu CM
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Nov; 30(21):1744-1746. PubMed ID: 29871191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Self-Stiffness Adjustment of Growth-Controllable Continuum Robot (GCCR) Based on Elastic Force Transmission.
    Wang M; Yuan J; Bao S; Du L; Ma S
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery.
    Vicini C; Montevecchi F; D'Agostino G; DE Vito A; Meccariello G
    Acta Otorhinolaryngol Ital; 2015 Jun; 35(3):157-61. PubMed ID: 26246659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.