These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37058678)

  • 1. Thermalization of the Ablowitz-Ladik lattice in the presence of non-integrable perturbations.
    Selim MA; Pyrialakos GG; Wu FO; Musslimani Z; Makris KG; Khajavikhan M; Christodoulides D
    Opt Lett; 2023 Apr; 48(8):2206-2209. PubMed ID: 37058678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermalization in the one-dimensional Salerno model lattice.
    Mithun T; Maluckov A; Manda BM; Skokos C; Bishop A; Saxena A; Khare A; Kevrekidis PG
    Phys Rev E; 2021 Mar; 103(3-1):032211. PubMed ID: 33862787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
    Ankiewicz A; Akhmediev N; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme events in discrete nonlinear lattices.
    Maluckov A; Hadzievski Lj; Lazarides N; Tsironis GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):025601. PubMed ID: 19391797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.
    Wen XY; Yan Z; Malomed BA
    Chaos; 2016 Dec; 26(12):123110. PubMed ID: 28039965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of solitons in a randomly perturbed Ablowitz-Ladik chain.
    Garnier J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026608. PubMed ID: 11308602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How close are integrable and nonintegrable models: A parametric case study based on the Salerno model.
    Mithun T; Maluckov A; Mančić A; Khare A; Kevrekidis PG
    Phys Rev E; 2023 Feb; 107(2-1):024202. PubMed ID: 36932573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.
    Nakamura K; Sobirov ZA; Matrasulov DU; Sawada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026609. PubMed ID: 21929130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonintegrable Schrodinger discrete breathers.
    Gómez-Gardeñes J; Floría LM; Peyrard M; Bishop AR
    Chaos; 2004 Dec; 14(4):1130-47. PubMed ID: 15568927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase autoresonant excitations in discrete nonlinear Schrödinger systems.
    Gopher Y; Friedland L; Shagalov AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036604. PubMed ID: 16241589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-soliton collisions in a near-integrable lattice system.
    Dmitriev SV; Kevrekidis PG; Malomed BA; Frantzeskakis DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056603. PubMed ID: 14682902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermalization Dynamics of Nonlinear Non-Hermitian Optical Lattices.
    Pyrialakos GG; Ren H; Jung PS; Khajavikhan M; Christodoulides DN
    Phys Rev Lett; 2022 May; 128(21):213901. PubMed ID: 35687426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of Thermalization and Strong Disorder: Wave Turbulence Theory, Numerical Simulations, and Experiments in Multimode Optical Fibers.
    Berti N; Baudin K; Fusaro A; Millot G; Picozzi A; Garnier J
    Phys Rev Lett; 2022 Aug; 129(6):063901. PubMed ID: 36018655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach to first-order exact solutions of the Ablowitz-Ladik equation.
    Ankiewicz A; Akhmediev N; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056602. PubMed ID: 21728677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.
    Akhmediev N; Ankiewicz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046603. PubMed ID: 21599322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation-induced radiation by the Ablowitz-Ladik soliton.
    Doktorov EV; Matsuka NP; Rothos VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066610. PubMed ID: 14754339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.
    Yu F
    Chaos; 2017 Feb; 27(2):023108. PubMed ID: 28249392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the Ablowitz-Ladik soliton train.
    Doktorov EV; Matsuka NP; Rothos VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056607. PubMed ID: 15244963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.
    Yu F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032914. PubMed ID: 25871179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.
    Khare A; Rasmussen KØ; Salerno M; Samuelsen MR; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016607. PubMed ID: 16907204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.