These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37058712)

  • 1. Application of in-situ formed polymer-based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid-liquid microextraction for the extraction of neonicotinoid pesticides from milk samples.
    Anvar Nojedeh Sadat S; Atazadeh R; Afshar Mogaddam MR
    J Sep Sci; 2023 Jul; 46(13):e2200889. PubMed ID: 37058712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS.
    Nemati M; Tuzen M; Farazajdeh MA; Kaya S; Afshar Mogaddam MR
    Anal Chim Acta; 2022 Mar; 1199():339570. PubMed ID: 35227380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of magnetic dispersive solid phase extraction combined with solidification of floating organic droplet-based dispersive liquid-liquid microextraction and GC-MS in the extraction and determination of polycyclic aromatic hydrocarbons in honey.
    Mohebbi A; Fathi AA; Afshar Mogaddam MR; Farajzadeh MA; Yaripour S; Fattahi N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 Feb; 41(2):175-187. PubMed ID: 38252747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples.
    Jouyban A; Farajzadeh MA; Afshar Mogaddam MR
    Talanta; 2020 Jan; 206():120169. PubMed ID: 31514834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid-liquid microextraction based on an in situ acid-base effervescent reaction and solidification of a floating organic droplet.
    Xue J; Zhang D; Wu X; Pan D; Shi T; Hua R
    Anal Bioanal Chem; 2019 Jan; 411(2):315-327. PubMed ID: 30578440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polymer-based dispersive solid phase extraction combined with deep eutectic solvent based-dispersive liquid-liquid microextraction for the determination of four hydroxylated polycyclic aromatic hydrocarbons from urine samples.
    Jouyban A; Nemati M; Farazajdeh MA; Alizadeh Nabil AA; Afshar Mogaddam MR
    J Sep Sci; 2021 Nov; 44(21):4025-4036. PubMed ID: 34459108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QuEChERS followed by dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for organochlorine pesticides analysis in fish.
    Wang XC; Shu B; Li S; Yang ZG; Qiu B
    Talanta; 2017 Jan; 162():90-97. PubMed ID: 27837889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive solid phase extraction combined with solidification of floating organic drop-liquid-liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples.
    Afshar Mogaddam MR; Farajzadeh MA; Azadmard Damirchi S; Nemati M
    J Chromatogr A; 2020 Sep; 1630():461523. PubMed ID: 32920246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An all-embracing analytical method comprising modified QuEChERS-dispersive micro-solid-phase extraction-dispersive liquid-liquid microextraction using FeGA MOF for the extraction and preconcentration of pesticides simultaneously from juice and flesh of watermelon.
    Pezhhanfar S; Farajzadeh MA; Hosseini-Yazdi SA; Mogaddam MRA
    Anal Sci; 2023 Aug; 39(8):1201-1214. PubMed ID: 37017814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution decomposition of deep eutectic solvents in pH-induced solidification of floating organic droplet homogeneous liquid-liquid microextraction for the extraction of pyrethroid pesticides from milk.
    Niroumandpassand A; Javadi A; Afshar Mogaddam MR
    Anal Methods; 2021 Apr; 13(14):1747-1756. PubMed ID: 33861242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Countercurrent Salting-out Homogenous Liquid-Liquid Extraction and Dispersive Liquid-Liquid Microextraction Based on the Solidification of Floating Organic Drop Followed by High-Performance Liquid Chromatography for the Isolation and Preconcentration of Pesticides from Fruit Samples.
    Teymori Z; Sadeghi M; Fattahi N
    J AOAC Int; 2022 Apr; 105(3):802-811. PubMed ID: 34904642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.
    Peng G; He Q; Mmereki D; Lu Y; Zhong Z; Liu H; Pan W; Zhou G; Chen J
    J Sep Sci; 2016 Apr; 39(7):1258-65. PubMed ID: 26888089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified QuEChERS in combination with dispersive liquid-liquid microextraction based on solidification of the floating organic droplet method for the determination of organophosphorus pesticides in milk samples.
    Miao XX; Liu DB; Wang YR; Yang YY; Yang XY; Gong HR
    J Chromatogr Sci; 2015; 53(10):1813-20. PubMed ID: 26270080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ sorbent formation for the extraction of pesticides from honey.
    Nemati M; Altunay N; Tuzen M; Farajzadeh MA; Afshar Mogaddam MR
    J Sep Sci; 2022 Jul; 45(14):2652-2662. PubMed ID: 35596522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of a dispersive solid phase extraction method based on octadecylamine modified magnetic nanoparticles with dispersive liquid-liquid microextraction for the extraction and preconcentration of pesticides.
    Farajzadeh MA; Fazli N; Pezhhanfar S; Afshar Mogaddam MR
    Anal Methods; 2022 Jun; 14(24):2376-2388. PubMed ID: 35666192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboflavin as a green sorbent in dispersive micro-solid-phase extraction of several pesticides from fruit juices combined with dispersive liquid-liquid microextraction.
    Abbasalizadeh A; Sorouraddin SM; Farajzadeh MA; Marzi E; Afshar Mogaddam MR
    J Sep Sci; 2022 May; 45(9):1550-1559. PubMed ID: 35220687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.