These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37058767)

  • 1. Sagittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum.
    van Mierlo M; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2023 May; 152():111580. PubMed ID: 37058767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery from sagittal-plane whole body angular momentum perturbations during walking.
    van Mierlo M; Ambrosius JI; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2022 Aug; 141():111169. PubMed ID: 35738058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking.
    van Mierlo M; Abma M; Vlutters M; van Asseldonk EHF; van der Kooij H
    Hum Mov Sci; 2023 Oct; 91():103138. PubMed ID: 37573800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in dynamic balance control in adults with obesity across walking speeds.
    Kim D; Lewis CL; Silverman AK; Gill SV
    J Biomech; 2022 Nov; 144():111308. PubMed ID: 36150320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of sagittal-plane whole-body angular momentum during perturbed and unperturbed gait using simplified body models.
    Zhang J; van Mierlo M; Veltink PH; van Asseldonk EHF
    Hum Mov Sci; 2024 Feb; 93():103179. PubMed ID: 38244350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differences in sagittal plane whole-body angular momentum during gait between patients with hemiparesis and healthy people.
    Honda K; Sekiguchi Y; Muraki T; Izumi SI
    J Biomech; 2019 Mar; 86():204-209. PubMed ID: 30827701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of whole-body angular momentum during human walking.
    Negishi T; Ogihara N
    Sci Rep; 2023 May; 13(1):8000. PubMed ID: 37198286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking whole-body angular momentum and step placement during perturbed human walking.
    Leestma JK; Golyski PR; Smith CR; Sawicki GS; Young AJ
    J Exp Biol; 2023 Mar; 226(6):. PubMed ID: 36752161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The choice of reference point for computing sagittal plane angular momentum affects inferences about dynamic balance.
    Liu C; Park S; Finley J
    PeerJ; 2022; 10():e13371. PubMed ID: 35582618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility to walking balance perturbations in young adults is largely unaffected by anticipation.
    Eichenlaub EK; Urrego DD; Sapovadia S; Allen J; Mercer VS; Crenshaw JR; Franz JR
    Hum Mov Sci; 2023 Jun; 89():103070. PubMed ID: 36878025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations between asymmetry and reactive balance control during split-belt walking.
    Cornwell T; Novotny R; Finley JM
    J Biomech; 2024 Jul; 172():112221. PubMed ID: 38972274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of dynamic balancing responses following perturbations during slow walking in relation to clinical outcome measures for high-functioning post-stroke subjects.
    Zadravec M; Olenšek A; Rudolf M; Bizovičar N; Goljar N; Matjačić Z
    J Neuroeng Rehabil; 2020 Jul; 17(1):85. PubMed ID: 32615990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pelvis perturbations in various directions while standing in staggered stance elicit concurrent responses in both the sagittal and frontal plane.
    van Mierlo M; Ormiston JA; Vlutters M; van Asseldonk EHF; van der Kooij H
    PLoS One; 2023; 18(4):e0272245. PubMed ID: 37043457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric gait patterns alter the reactive control of intersegmental coordination patterns in the sagittal plane during walking.
    Liu C; Finley JM
    PLoS One; 2020; 15(5):e0224187. PubMed ID: 32437458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.