BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37058825)

  • 1. Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements.
    Babu Manoharan G; Guzmán C; Najumudeen AK; Abankwa D
    Eur J Cell Biol; 2023 Jun; 102(2):151314. PubMed ID: 37058825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage.
    Parkkola H; Siddiqui FA; Oetken-Lindholm C; Abankwa D
    Methods Mol Biol; 2021; 2262():233-250. PubMed ID: 33977480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering.
    Guzmán C; Šolman M; Ligabue A; Blaževitš O; Andrade DM; Reymond L; Eggeling C; Abankwa D
    J Biol Chem; 2014 Apr; 289(14):9519-33. PubMed ID: 24569991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and application of in vivo FRET biosensors to identify protein prenylation and nanoclustering inhibitors.
    Köhnke M; Schmitt S; Ariotti N; Piggott AM; Parton RG; Lacey E; Capon RJ; Alexandrov K; Abankwa D
    Chem Biol; 2012 Jul; 19(7):866-74. PubMed ID: 22840774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homo-FRET imaging as a tool to quantify protein and lipid clustering.
    Bader AN; Hoetzl S; Hofman EG; Voortman J; van Bergen en Henegouwen PM; van Meer G; Gerritsen HC
    Chemphyschem; 2011 Feb; 12(3):475-83. PubMed ID: 21344588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.
    Warren SC; Margineanu A; Katan M; Dunsby C; French PM
    Int J Mol Sci; 2015 Jun; 16(7):14695-716. PubMed ID: 26133241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of fluorescence anisotropy during photoswitching provides a simple readout for protein self-association.
    Ojha N; Rainey KH; Patterson GH
    Nat Commun; 2020 Jan; 11(1):21. PubMed ID: 31911590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence anisotropy uncovers changes in protein packing with inclusion growth in a cellular model of polyglutamine aggregation.
    Bhardwaj V; Panicker MM; Udgaonkar JB
    Biochemistry; 2014 Jun; 53(22):3621-36. PubMed ID: 24819723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.
    Squire A; Verveer PJ; Rocks O; Bastiaens PI
    J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores.
    Huang W; Guo C; Zhai J; Xie X
    Anal Chem; 2022 Jul; 94(27):9793-9800. PubMed ID: 35772106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer.
    Teijeiro-Gonzalez Y; Crnjar A; Beavil AJ; Beavil RL; Nedbal J; Le Marois A; Molteni C; Suhling K
    Biophys J; 2021 Jan; 120(2):254-269. PubMed ID: 33345902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug targeting opportunities en route to Ras nanoclusters.
    Pavic K; Chippalkatti R; Abankwa D
    Adv Cancer Res; 2022; 153():63-99. PubMed ID: 35101236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy.
    Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S
    Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homo-FRET Imaging to Study Protein-Protein Interaction and Complex Formation in Plants.
    Weidtkamp-Peters S; Rehwald S; Stahl Y
    Methods Mol Biol; 2022; 2379():197-208. PubMed ID: 35188664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-laser homo-FRET on the cell surface.
    Bene L; Ungvári T; Fedor R; Nagy I; Damjanovich L
    Biochim Biophys Acta; 2015 May; 1853(5):1096-112. PubMed ID: 25668611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rab-NANOPS: FRET biosensors for Rab membrane nanoclustering and prenylation detection in mammalian cells.
    Najumudeen AK; Guzmán C; Posada IM; Abankwa D
    Methods Mol Biol; 2015; 1298():29-45. PubMed ID: 25800830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins.
    Najumudeen AK; Köhnke M; Solman M; Alexandrov K; Abankwa D
    PLoS One; 2013; 8(6):e66425. PubMed ID: 23824448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.