These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37058894)

  • 21. Injectable Micromotor@Hydrogel System for Antibacterial Therapy.
    Yang S; Ren J; Wang H
    Chemistry; 2022 Feb; 28(7):e202103867. PubMed ID: 34890072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable bisubstrate multi-colorimetric assay based on peroxidase-like nanozyme and complementary colorharmonic principle for semi-quantitative detection of H
    Su M; Chen H; Zhang H; Wang Z
    Mikrochim Acta; 2022 Jan; 189(2):81. PubMed ID: 35099625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione.
    Yuan K; Cuntín-Abal C; Jurado-Sánchez B; Escarpa A
    Anal Chem; 2021 Dec; 93(49):16385-16392. PubMed ID: 34806352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stomatocyte structural color-barcode micromotors for multiplex assays.
    Cai L; Wang H; Yu Y; Bian F; Wang Y; Shi K; Ye F; Zhao Y
    Natl Sci Rev; 2020 Mar; 7(3):644-651. PubMed ID: 34692083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colorimetric and Raman dual-mode lateral flow immunoassay detection of SARS-CoV-2 N protein antibody based on Ag nanoparticles with ultrathin Au shell assembled onto Fe
    Li J; Liang P; Zhao T; Guo G; Zhu J; Wen C; Zeng J
    Anal Bioanal Chem; 2023 Feb; 415(4):545-554. PubMed ID: 36414739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation.
    Tong J; Wang D; Wang D; Xu F; Duan R; Zhang D; Fan J; Dong B
    Langmuir; 2020 Jun; 36(25):6930-6937. PubMed ID: 31604011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays.
    María-Hormigos R; Molinero-Fernández Á; López MÁ; Jurado-Sánchez B; Escarpa A
    Anal Chem; 2022 Apr; 94(14):5575-5582. PubMed ID: 35362949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Golubkov A; Kiverin A
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38877-38885. PubMed ID: 34351762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle mediated micromotor motion.
    Liu M; Liu L; Gao W; Su M; Ge Y; Shi L; Zhang H; Dong B; Li CY
    Nanoscale; 2015 Mar; 7(11):4949-55. PubMed ID: 25689965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals.
    Ye H; Wang Y; Liu X; Xu D; Yuan H; Sun H; Wang S; Ma X
    J Colloid Interface Sci; 2021 Apr; 588():510-521. PubMed ID: 33429347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
    Dong R; Hu Y; Wu Y; Gao W; Ren B; Wang Q; Cai Y
    J Am Chem Soc; 2017 Feb; 139(5):1722-1725. PubMed ID: 28117995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composite Multifunctional Micromotors from Droplet Microfluidics.
    Zou M; Wang J; Yu Y; Sun L; Wang H; Xu H; Zhao Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34618-34624. PubMed ID: 30212179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-Scale Self-Assembly of MOFs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation.
    Huang H; Li J; Yuan M; Yang H; Zhao Y; Ying Y; Wang S
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211163. PubMed ID: 36121046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous Removal of Antibiotics and Heavy Metals with Poly(Aspartic Acid)-Based Fenton Micromotors.
    Ding X; Liu Y; Chen X; Liu W; Li J
    Chem Asian J; 2021 Jul; 16(14):1930-1936. PubMed ID: 34002533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Droplet-based microreactor for the production of micro/nano-materials.
    Liu L; Xiang N; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):833-851. PubMed ID: 31785601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect.
    Li J; He X; Jiang H; Xing Y; Fu B; Hu C
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36027-36037. PubMed ID: 35916408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogel micromotors with catalyst-containing liquid core and shell.
    Zhu H; Nawar S; Werner JG; Liu J; Huang G; Mei Y; Weitz DA; Solovev AA
    J Phys Condens Matter; 2019 May; 31(21):214004. PubMed ID: 30777936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.
    Wang Y; Zhu Y; Binyam A; Liu M; Wu Y; Li F
    Biosens Bioelectron; 2016 Dec; 86():432-438. PubMed ID: 27419909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.