BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37059183)

  • 1. GTPase splice variants RAC1 and RAC1B display isoform-specific differences in localization, prenylation, and interaction with the chaperone protein SmgGDS.
    Koehn OJ; Lorimer E; Unger B; Harris R; Das AS; Suazo KF; Auger SA; Distefano MD; Prokop JW; Williams CL
    J Biol Chem; 2023 Jun; 299(6):104698. PubMed ID: 37059183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splice variants of SmgGDS control small GTPase prenylation and membrane localization.
    Berg TJ; Gastonguay AJ; Lorimer EL; Kuhnmuench JR; Li R; Fields AP; Williams CL
    J Biol Chem; 2010 Nov; 285(46):35255-66. PubMed ID: 20709748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy.
    Brandt AC; McNally L; Lorimer EL; Unger B; Koehn OJ; Suazo KF; Rein L; Szabo A; Tsaih SW; Distefano MD; Flister MJ; Rigo F; McNally MT; Williams CL
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3627-3636. PubMed ID: 32019878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif.
    Schuld NJ; Vervacke JS; Lorimer EL; Simon NC; Hauser AD; Barbieri JT; Distefano MD; Williams CL
    J Biol Chem; 2014 Mar; 289(10):6862-6876. PubMed ID: 24415755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
    García-Torres D; Fierke CA
    J Biol Chem; 2019 Aug; 294(31):11793-11804. PubMed ID: 31197034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SmgGDS: An Emerging Master Regulator of Prenylation and Trafficking by Small GTPases in the Ras and Rho Families.
    Brandt AC; Koehn OJ; Williams CL
    Front Mol Biosci; 2021; 8():685135. PubMed ID: 34222337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the Phosphorylation-Dependent Regulation of Prenylation of Rap1A and Rap1B.
    Wilson JM; Prokop JW; Lorimer E; Ntantie E; Williams CL
    J Mol Biol; 2016 Dec; 428(24 Pt B):4929-4945. PubMed ID: 27760305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based analysis of the guanine nucleotide exchange factor SmgGDS reveals armadillo-repeat motifs and key regions for activity and GTPase binding.
    Shimizu H; Toma-Fukai S; Saijo S; Shimizu N; Kontani K; Katada T; Shimizu T
    J Biol Chem; 2017 Aug; 292(32):13441-13448. PubMed ID: 28630045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1.
    Lanning CC; Ruiz-Velasco R; Williams CL
    J Biol Chem; 2003 Apr; 278(14):12495-506. PubMed ID: 12551911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tumor-suppressive Small GTPase DiRas1 Binds the Noncanonical Guanine Nucleotide Exchange Factor SmgGDS and Antagonizes SmgGDS Interactions with Oncogenic Small GTPases.
    Bergom C; Hauser AD; Rymaszewski A; Gonyo P; Prokop JW; Jennings BC; Lawton AJ; Frei A; Lorimer EL; Aguilera-Barrantes I; Mackinnon AC; Noon K; Fierke CA; Williams CL
    J Biol Chem; 2016 Mar; 291(12):6534-45. PubMed ID: 26814130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SmgGDS-558 regulates the cell cycle in pancreatic, non-small cell lung, and breast cancers.
    Schuld NJ; Hauser AD; Gastonguay AJ; Wilson JM; Lorimer EL; Williams CL
    Cell Cycle; 2014; 13(6):941-52. PubMed ID: 24552806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 19-amino acid insertion in the tumor-associated splice isoform Rac1b confers specific binding to p120 catenin.
    Orlichenko L; Geyer R; Yanagisawa M; Khauv D; Radisky ES; Anastasiadis PZ; Radisky DC
    J Biol Chem; 2010 Jun; 285(25):19153-61. PubMed ID: 20395297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SmgGDS-607 Regulation of RhoA GTPase Prenylation Is Nucleotide-Dependent.
    Jennings BC; Lawton AJ; Rizk Z; Fierke CA
    Biochemistry; 2018 Jul; 57(29):4289-4298. PubMed ID: 29940100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process.
    Visvikis O; Lorès P; Boyer L; Chardin P; Lemichez E; Gacon G
    FEBS J; 2008 Jan; 275(2):386-96. PubMed ID: 18093184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis.
    Zhou C; Licciulli S; Avila JL; Cho M; Troutman S; Jiang P; Kossenkov AV; Showe LC; Liu Q; Vachani A; Albelda SM; Kissil JL
    Oncogene; 2013 Feb; 32(7):903-9. PubMed ID: 22430205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences.
    Williams CL
    Cell Signal; 2003 Dec; 15(12):1071-80. PubMed ID: 14575862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of tumor-specific splice variant Rac1b by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells.
    Esufali S; Charames GS; Pethe VV; Buongiorno P; Bapat B
    Cancer Res; 2007 Mar; 67(6):2469-79. PubMed ID: 17363564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558.
    Michalak DJ; Unger B; Lorimer E; Grishaev A; Williams CL; Heinrich F; Lösche M
    Biophys J; 2022 Oct; 121(19):3684-3697. PubMed ID: 35614853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GEF mechanism revealed by the structure of SmgGDS-558 and farnesylated RhoA complex and its implication for a chaperone mechanism.
    Shimizu H; Toma-Fukai S; Kontani K; Katada T; Shimizu T
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9563-9568. PubMed ID: 30190425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity.
    van der Burgh R; Pervolaraki K; Turkenburg M; Waterham HR; Frenkel J; Boes M
    J Biol Chem; 2014 Oct; 289(40):27757-65. PubMed ID: 25107911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.