BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37059281)

  • 1. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis.
    Cai H; Zhong Z; Chen Y; Zhang S; Ling H; Fu H; Zhang L
    Int J Biol Macromol; 2023 Jun; 240():124353. PubMed ID: 37059281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of enzymatic synthesis of theaflavins from potato polyphenol oxidase.
    Li D; Dong L; Li J; Zhang S; Lei Y; Deng M; Li J
    Bioprocess Biosyst Eng; 2022 Jun; 45(6):1047-1055. PubMed ID: 35487994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins.
    Subramanian N; Venkatesh P; Ganguli S; Sinkar VP
    J Agric Food Chem; 1999 Jul; 47(7):2571-8. PubMed ID: 10552528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant polyphenol oxidases for production of theaflavins from tea polyphenols.
    Zeng J; Du G; Shao X; Feng KN; Zeng Y
    Int J Biol Macromol; 2019 Aug; 134():139-145. PubMed ID: 31022487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Theaflavins and Their Functions.
    Takemoto M; Takemoto H
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29659496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.
    Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY
    J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in catechins oxidation products and their formation mechanism].
    Ding YP; Lu CQ; Hou HX; Cen YJ; Tong HR
    Zhongguo Zhong Yao Za Zhi; 2017 Jan; 42(2):239-253. PubMed ID: 28948726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing.
    Zhang G; Yang J; Cui D; Zhao D; Benedito VA; Zhao J
    Food Res Int; 2020 Nov; 137():109677. PubMed ID: 33233254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice.
    Cai X; Liu Z; Dong X; Wang Y; Zhu L; Li M; Xu Y
    Food Funct; 2021 Oct; 12(20):9922-9931. PubMed ID: 34492673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiviral activity of theaflavin digallate against herpes simplex virus type 1.
    de Oliveira A; Prince D; Lo CY; Lee LH; Chu TC
    Antiviral Res; 2015 Jun; 118():56-67. PubMed ID: 25818500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea.
    Hua J; Wang H; Yuan H; Yin P; Wang J; Guo G; Jiang Y
    J Sci Food Agric; 2022 May; 102(7):2750-2760. PubMed ID: 34719036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified recovery of enzymes and nutrients in sweet potato wastewater and preparing health black tea and theaflavins with scrap tea.
    Li QR; Luo JL; Zhou ZH; Wang GY; Chen R; Cheng S; Wu M; Li H; Ni H; Li HH
    Food Chem; 2018 Apr; 245():854-862. PubMed ID: 29287451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves.
    Guo XY; Lv YQ; Ye Y; Liu ZY; Zheng XQ; Lu JL; Liang YR; Ye JH
    Food Chem; 2021 Mar; 339():128088. PubMed ID: 32979714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the temporal contributors and their interactions during dynamic formation of black tea cream.
    Chen L; Wang J; Yang Y; Wang H; Xu A; Ma J; Wang Y; Xu P
    Food Chem; 2024 Aug; 448():139138. PubMed ID: 38569407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins.
    Hashiguchi K; Teramoto S; Katayama K; Matsuo Y; Saito Y; Tanaka T
    J Agric Food Chem; 2023 Oct; 71(41):15319-15330. PubMed ID: 37812808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic expression and purification of Camellia sinensis polyphenol oxidase.
    Liu JW; Huang YY; Ding J; Liu C; Xiao XD; Ni DJ
    J Sci Food Agric; 2010 Nov; 90(14):2490-4. PubMed ID: 20661922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments.
    Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH
    J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Tea Withering Process Using Ethylene or UV-C.
    Collings ER; Alamar MC; Márquez MB; Kourmpetli S; Kevei Z; Thompson AJ; Mohareb F; Terry LA
    J Agric Food Chem; 2021 Nov; 69(45):13596-13607. PubMed ID: 34739246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases.
    Verloop AJ; Gruppen H; Bisschop R; Vincken JP
    Food Chem; 2016 Apr; 196():1197-206. PubMed ID: 26593607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.