BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37059515)

  • 1. Formulation and stabilization of high internal phase emulsions: Stabilization by cellulose nanocrystals and gelatinized soluble starch.
    Bai Y; Qiu T; Chen B; Shen C; Yu C; Luo Z; Zhang J; Xu W; Deng Z; Xu J; Zhang H
    Carbohydr Polym; 2023 Jul; 312():120693. PubMed ID: 37059515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals.
    Miao C; Mirvakili MN; Hamad WY
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2820-2829. PubMed ID: 34802766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the formation mechanisms in high internal phase Pickering emulsions stabilized by cellulose nanocrystals.
    Miao C; Tayebi M; Hamad WY
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion.
    Meirelles AAD; Costa ALR; Cunha RL
    Int J Biol Macromol; 2020 Apr; 158():75-84. PubMed ID: 32344097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by
    Cao Y; Dai Y; Lu X; Li R; Zhou W; Li J; Zheng B
    Front Nutr; 2021; 8():770218. PubMed ID: 34888338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel.
    Yu J; Zhang Y; Zhang R; Gao Y; Mao L
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127815. PubMed ID: 37918613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions.
    Ni Y; Li J; Fan L
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128796. PubMed ID: 38104679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals.
    Capron I; Cathala B
    Biomacromolecules; 2013 Feb; 14(2):291-6. PubMed ID: 23289355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emulsions undergoing phase transition: Effect of emulsifier type and concentration.
    Ataeian P; Aroyan L; Parwez W; Tam KC
    J Colloid Interface Sci; 2022 Jul; 617():214-223. PubMed ID: 35276522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin.
    Chen K; Qian Y; Wu S; Qiu X; Yang D; Lei L
    Food Funct; 2019 Jun; 10(6):3543-3555. PubMed ID: 31150025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low gelatin concentration assisted cellulose nanocrystals stabilized high internal phase emulsion: The key role of interaction.
    Wang Y; Huang Y; Li H; Luo Y; Dai D; Zhang Y; Wang H; Chen H; Wu J; Dai H
    Carbohydr Polym; 2024 Aug; 337():122175. PubMed ID: 38710578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles.
    Jia Y; Kong L; Zhang B; Fu X; Huang Q
    Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Internal Phase Emulsions Stabilized with Polyphenol-Amyloid Fibril Supramolecules for Encapsulation and Protection of Lutein.
    Leng X; Cheng S; Wu H; Nian Y; Zeng X; Hu B
    J Agric Food Chem; 2022 Feb; 70(7):2328-2338. PubMed ID: 35133823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Internal Phase Emulsions Synergistically Stabilized by Sodium Carboxymethyl Cellulose and Palm Kernel Oil Ethoxylates as an Essential Oil Delivery System.
    Chen Q; Tai X; Li J; Li C; Guo L
    J Agric Food Chem; 2021 Apr; 69(14):4191-4203. PubMed ID: 33787238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch.
    Yang J; Gu Z; Cheng L; Li Z; Li C; Ban X; Hong Y
    Carbohydr Polym; 2021 Jun; 262():117926. PubMed ID: 33838805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Natural Egg Yolk Granule Stabilized Pickering High Internal Phase Emulsions by Means of NaCl Ionic Strength and pH Change.
    Mi S; Xia M; Zhang X; Liu J; Cai Z
    Foods; 2022 Jan; 11(2):. PubMed ID: 35053961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods.
    Zhang F; Wang P; Huang M; Xu X
    Carbohydr Polym; 2024 Jan; 324():121540. PubMed ID: 37985113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils.
    Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals.
    Varanasi S; Henzel L; Mendoza L; Prathapan R; Batchelor W; Tabor R; Garnier G
    Front Chem; 2018; 6():409. PubMed ID: 30283771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High internal phase emulsions stabilized by alkaline-extracted walnut protein isolates and their application in food 3D printing.
    Huang X; Yan C; Xu Y; Ling M; He C; Zhou Z
    Food Res Int; 2023 Jul; 169():112858. PubMed ID: 37254432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.