These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37059557)

  • 1. Rheological studies of cellulose nanocrystal/dimethyl sulfoxide organogels.
    Xu Q; Bu F; Sun C; Huang X; Luo H
    Carbohydr Polym; 2023 Jul; 312():120830. PubMed ID: 37059557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink.
    Raza A; Hayat U; Zhang X; Wang JY
    Int J Pharm; 2022 Nov; 627():122206. PubMed ID: 36126824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Temperature and Shear on the Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents.
    Ren ZF; Lin KY; Yu SS
    Biomacromolecules; 2024 Jan; 25(1):248-257. PubMed ID: 38110336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose Nanocrystal (CNC)-Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties.
    Pakdel AS; Niinivaara E; Cranston ED; Berry RM; Dubé MA
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000448. PubMed ID: 33047439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-adhesive, ionic-conductive, mechanically robust cellulose-based organogels with anti-freezing and rapid recovery properties for flexible sensors.
    Zhou Y; Li R; Wan L; Zhang F; Liu Z; Cao Y
    Int J Biol Macromol; 2023 Jun; 240():124171. PubMed ID: 36966862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Thermoresponsive Xyloglucan-Cellulose Nanocrystal Hydrogels.
    Talantikite M; Stimpson TC; Gourlay A; Le-Gall S; Moreau C; Cranston ED; Moran-Mirabal JM; Cathala B
    Biomacromolecules; 2021 Feb; 22(2):743-753. PubMed ID: 33332094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis.
    Özdemir B; Nofar M
    Carbohydr Polym; 2021 Sep; 268():118243. PubMed ID: 34127223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions.
    Pandey A; Derakhshandeh M; Kedzior SA; Pilapil B; Shomrat N; Segal-Peretz T; Bryant SL; Trifkovic M
    J Colloid Interface Sci; 2018 Dec; 532():808-818. PubMed ID: 30144751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system.
    Qin Y; Chang R; Ge S; Xiong L; Sun Q
    Int J Biol Macromol; 2017 Sep; 102():1073-1082. PubMed ID: 28476596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light and pH dual-responsive spiropyran-based cellulose nanocrystals.
    Ye X; Wang A; Zhang D; Zhou P; Zhu P
    RSC Adv; 2023 Apr; 13(17):11495-11502. PubMed ID: 37063713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties.
    Wu M; Chen X; Xu J; Zhang H
    Carbohydr Polym; 2022 Feb; 278():119003. PubMed ID: 34973803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical crystallization in surface-modified nanocellulose organogels.
    Banerjee M; Saraswatula S; Willows LG; Woods H; Brettmann B
    J Mater Chem B; 2018 Nov; 6(44):7317-7328. PubMed ID: 32254641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
    Reid MS; Villalobos M; Cranston ED
    Langmuir; 2017 Feb; 33(7):1583-1598. PubMed ID: 27959566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
    Abitbol T; Mijlkovic A; Malafronte L; Stevanic JS; Larsson PT; Lopez-Sanchez P
    Carbohydr Polym; 2021 May; 260():117345. PubMed ID: 33712116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobized cellulose nanocrystals enhance xanthan and locust bean gum network properties in gels and emulsions.
    Nigmatullin R; Johns MA; Eichhorn SJ
    Carbohydr Polym; 2020 Dec; 250():116953. PubMed ID: 33049858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Robust Gels Formed from Hydrophobized Cellulose Nanocrystals.
    Nigmatullin R; Harniman R; Gabrielli V; Muñoz-García JC; Khimyak YZ; Angulo J; Eichhorn SJ
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19318-19322. PubMed ID: 29790733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.