These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37059857)
1. Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots. Xue W; Liu X; Liu C; Zhang X; Li J; Yang Z; Cui P; Peng HJ; Jiang Q; Li H; Xu P; Zheng T; Xia C; Zeng J Nat Commun; 2023 Apr; 14(1):2137. PubMed ID: 37059857 [TBL] [Abstract][Full Text] [Related]
2. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes. Zhang L; Chen Z; Liu Z; Bu J; Ma W; Yan C; Bai R; Lin J; Zhang Q; Liu J; Wang T; Zhang J Nat Commun; 2021 Nov; 12(1):6574. PubMed ID: 34772929 [TBL] [Abstract][Full Text] [Related]
3. Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer. Chen F; Li L; Cheng C; Yu Y; Zhao BH; Zhang B Nat Commun; 2024 Jul; 15(1):5914. PubMed ID: 39003284 [TBL] [Abstract][Full Text] [Related]
4. Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. Fu X; Liu J; Kanchanakungwankul S; Hu X; Yue Q; Truhlar DG; Hupp JT; Kang Y Nano Lett; 2021 Jul; 21(13):5620-5626. PubMed ID: 34170691 [TBL] [Abstract][Full Text] [Related]
5. Functional Aqueous Zinc-Acetylene Batteries for Electricity Generation and Electrochemical Acetylene Reduction to Ethylene. An S; Liu Z; Bu J; Lin J; Yao Y; Yan C; Tian W; Zhang J Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202116370. PubMed ID: 35001470 [TBL] [Abstract][Full Text] [Related]
6. Cu Single-Atom Catalysts for High-Selectivity Electrocatalytic Acetylene Semihydrogenation. Jiang X; Tang L; Dong L; Sheng X; Zhang W; Liu Z; Shen J; Jiang H; Li C Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202307848. PubMed ID: 37378584 [TBL] [Abstract][Full Text] [Related]
7. Pure Acetylene Semihydrogenation over Ni-Cu Bimetallic Catalysts: Effect of the Cu/Ni Ratio on Catalytic Performance. Zhou S; Kang L; Zhou X; Xu Z; Zhu M Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32168927 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Wang S; Uwakwe K; Yu L; Ye J; Zhu Y; Hu J; Chen R; Zhang Z; Zhou Z; Li J; Xie Z; Deng D Nat Commun; 2021 Dec; 12(1):7072. PubMed ID: 34873161 [TBL] [Abstract][Full Text] [Related]
9. Efficient industrial-current-density acetylene to polymer-grade ethylene via hydrogen-localization transfer over fluorine-modified copper. Bai L; Wang Y; Han Z; Bai J; Leng K; Zheng L; Qu Y; Wu Y Nat Commun; 2023 Dec; 14(1):8384. PubMed ID: 38104169 [TBL] [Abstract][Full Text] [Related]
10. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Ma J; Xing F; Nakaya Y; Shimizu KI; Furukawa S Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202200889. PubMed ID: 35470948 [TBL] [Abstract][Full Text] [Related]
11. Near 100% Conversion of Acetylene to High-purity Ethylene at Ampere-Level Current. Wu Z; Zhang J; Guan Q; Liu X; Xiong H; Chen S; Hong W; Li D; Lei Y; Deng S; Wang J; Wang G Adv Mater; 2024 Oct; 36(41):e2408681. PubMed ID: 39155581 [TBL] [Abstract][Full Text] [Related]
12. Highly Selective Acetylene-to-Ethylene Electroreduction Over Cd-Decorated Cu Catalyst with Efficiently Inhibited Carbon-Carbon Coupling. Wang Z; Li C; Peng G; Shi R; Shang L; Zhang T Angew Chem Int Ed Engl; 2024 May; 63(19):e202400122. PubMed ID: 38494445 [TBL] [Abstract][Full Text] [Related]
13. A highly active catalyst derived from CuO particles for selective hydrogenation of acetylene in large excess ethylene. Zeng A; Lu C; Xu B; Wang A; Liu YY; Sun Z; Wang Y Phys Chem Chem Phys; 2023 May; 25(20):14598-14605. PubMed ID: 37191254 [TBL] [Abstract][Full Text] [Related]
14. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation. Ma J; Xing F; Shimizu KI; Furukawa S Chem Sci; 2024 Mar; 15(11):4086-4094. PubMed ID: 38487246 [TBL] [Abstract][Full Text] [Related]
15. An in situ DRIFTS mechanistic study of CeO Cao T; You R; Zhang X; Chen S; Li D; Zhang Z; Huang W Phys Chem Chem Phys; 2018 Apr; 20(14):9659-9670. PubMed ID: 29582032 [TBL] [Abstract][Full Text] [Related]
16. Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. Feng H; Ding H; Wang S; Liang Y; Deng Y; Yang Y; Wei M; Zhang X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25288-25296. PubMed ID: 35622997 [TBL] [Abstract][Full Text] [Related]
17. Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. Ji Y; Yang C; Qian L; Zhang L; Zheng G J Colloid Interface Sci; 2021 Oct; 600():847-853. PubMed ID: 34051469 [TBL] [Abstract][Full Text] [Related]
18. Anchoring ultrasmall Pd nanoparticles by bipyridine functional covalent organic frameworks for semihydrogenation of acetylene. Zhang JQ; Wang YH; Zhang SJ; Lin YQ; Guan QQ; Xu XM RSC Adv; 2023 Aug; 13(35):24628-24638. PubMed ID: 37601589 [TBL] [Abstract][Full Text] [Related]
19. Selective hydrogenation of acetylene on Cu-Pd intermetallic compounds and Pd atoms substituted Cu(111) surfaces. Yuan D; Cai L; Xie T; Liao H; Hu W Phys Chem Chem Phys; 2021 Apr; 23(14):8653-8660. PubMed ID: 33876026 [TBL] [Abstract][Full Text] [Related]
20. Direct Conversion of Methane to Ethylene and Acetylene over an Iron-Based Metal-Organic Framework. Ma Y; Han X; Xu S; Li Z; Lu W; An B; Lee D; Chansai S; Sheveleva AM; Wang Z; Chen Y; Li J; Li W; Cai R; da Silva I; Cheng Y; Daemen LL; Tuna F; McInnes EJL; Hughes L; Manuel P; Ramirez-Cuesta AJ; Haigh SJ; Hardacre C; Schröder M; Yang S J Am Chem Soc; 2023 Sep; 145(38):20792-20800. PubMed ID: 37722104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]