These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 37059891)

  • 1. Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [
    Constantino CS; Leocádio S; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz S; Teixeira R; Neves M; Lúcio P; João C; Costa DC
    J Digit Imaging; 2023 Aug; 36(4):1864-1876. PubMed ID: 37059891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Convolutional Neural Networks for Fast Determination of Whole-Body Metabolic Tumor Burden in Pediatric Lymphoma.
    Etchebehere E; Andrade R; Camacho M; Lima M; Brink A; Cerci J; Nadel H; Bal C; Rangarajan V; Pfluger T; Kagna O; Alonso O; Begum FK; Mir KB; Magboo VP; Menezes LJ; Paez D; Pascual TN
    J Nucl Med Technol; 2022 Sep; 50(3):256-262. PubMed ID: 35440476
    [No Abstract]   [Full Text] [Related]  

  • 3. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in
    Driessen J; Zwezerijnen GJC; Schöder H; Drees EEE; Kersten MJ; Moskowitz AJ; Moskowitz CH; Eertink JJ; Vet HCW; Hoekstra OS; Zijlstra JM; Boellaard R
    J Nucl Med; 2022 Sep; 63(9):1424-1430. PubMed ID: 34992152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 11 automated PET segmentation methods in lymphoma.
    Weisman AJ; Kieler MW; Perlman S; Hutchings M; Jeraj R; Kostakoglu L; Bradshaw TJ
    Phys Med Biol; 2020 Nov; 65(23):235019. PubMed ID: 32906088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided detection and segmentation of malignant melanoma lesions on whole-body
    Dirks I; Keyaerts M; Neyns B; Vandemeulebroucke J
    Comput Methods Programs Biomed; 2022 Jun; 221():106902. PubMed ID: 35636357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis.
    Yousefirizi F; Klyuzhin IS; O JH; Harsini S; Tie X; Shiri I; Shin M; Lee C; Cho SY; Bradshaw TJ; Zaidi H; Bénard F; Sehn LH; Savage KJ; Steidl C; Uribe CF; Rahmim A
    Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):1937-1954. PubMed ID: 38326655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network.
    Blanc-Durand P; Jégou S; Kanoun S; Berriolo-Riedinger A; Bodet-Milin C; Kraeber-Bodéré F; Carlier T; Le Gouill S; Casasnovas RO; Meignan M; Itti E
    Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1362-1370. PubMed ID: 33097974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT.
    Leung KH; Rowe SP; Sadaghiani MS; Leal JP; Mena E; Choyke PL; Du Y; Pomper MG
    J Nucl Med; 2024 Apr; 65(4):643-650. PubMed ID: 38423786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning with uncertainty estimation for automatic tumor segmentation in PET/CT of head and neck cancers: impact of model complexity, image processing and augmentation.
    Huynh BN; Groendahl AR; Tomic O; Liland KH; Knudtsen IS; Hoebers F; van Elmpt W; Dale E; Malinen E; Futsaether CM
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39127060
    [No Abstract]   [Full Text] [Related]  

  • 11. Are lesion features reproducible between
    Constantino CS; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz SC; Vieira P; Costa DC
    Eur Radiol; 2021 May; 31(5):3071-3079. PubMed ID: 33125562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated, Semantic Segmentation of Whole-Body
    Shiyam Sundar LK; Yu J; Muzik O; Kulterer OC; Fueger B; Kifjak D; Nakuz T; Shin HM; Sima AK; Kitzmantl D; Badawi RD; Nardo L; Cherry SR; Spencer BA; Hacker M; Beyer T
    J Nucl Med; 2022 Dec; 63(12):1941-1948. PubMed ID: 35772962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-Learning
    Capobianco N; Meignan M; Cottereau AS; Vercellino L; Sibille L; Spottiswoode B; Zuehlsdorff S; Casasnovas O; Thieblemont C; Buvat I
    J Nucl Med; 2021 Jan; 62(1):30-36. PubMed ID: 32532925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.
    Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI
    Med Phys; 2024 Jun; 51(6):4324-4339. PubMed ID: 38710222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSMA-PET improves deep learning-based automated CT kidney segmentation.
    Leube J; Horn M; Hartrampf PE; Buck AK; Lassmann M; Tran-Gia J
    Z Med Phys; 2024 May; 34(2):231-241. PubMed ID: 37666698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network.
    Han S; Oh JS; Kim YI; Seo SY; Lee GD; Park MJ; Choi S; Kim HR; Kim YH; Kim DK; Park SI; Ryu JS
    Clin Nucl Med; 2022 Jul; 47(7):590-598. PubMed ID: 35675135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images.
    Jiang C; Chen K; Teng Y; Ding C; Zhou Z; Gao Y; Wu J; He J; He K; Zhang J
    Eur Radiol; 2022 Jul; 32(7):4801-4812. PubMed ID: 35166895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of manual and automated approaches for segmentation and extraction of quantitative indices from [
    Krokos G; Kotwal T; Malaih A; Barrington S; Jackson P; Hicks RJ; Marsden PK; Fischer BM
    Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38100790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Radiomics Features in Diffuse Large B-Cell Lymphoma: Does Segmentation Method Matter?
    Eertink JJ; Pfaehler EAG; Wiegers SE; van T; Brug D; Lugtenburg PJ; Hoekstra OS; Zijlstra JM; de Vet HCW; Boellaard R
    J Nucl Med; 2022 Mar; 63(3):389-395. PubMed ID: 34272315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas.
    Sadik M; Lind E; Polymeri E; Enqvist O; Ulén J; Trägårdh E
    Clin Physiol Funct Imaging; 2019 Jan; 39(1):78-84. PubMed ID: 30284376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.