These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37060130)
1. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution. Liu B; Zubi YS; Lewis JC Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130 [TBL] [Abstract][Full Text] [Related]
2. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Lewis JC Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755 [TBL] [Abstract][Full Text] [Related]
3. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ; Holland PL J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051 [TBL] [Abstract][Full Text] [Related]
4. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Zubi YS; Liu B; Gu Y; Sahoo D; Lewis JC Chem Sci; 2022 Feb; 13(5):1459-1468. PubMed ID: 35222930 [TBL] [Abstract][Full Text] [Related]
5. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
6. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Martins FL; Pordea A; Jäger CM Faraday Discuss; 2022 May; 234(0):315-335. PubMed ID: 35156975 [TBL] [Abstract][Full Text] [Related]
7. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Liang AD; Serrano-Plana J; Peterson RL; Ward TR Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358 [TBL] [Abstract][Full Text] [Related]
8. Site-Selective Functionalization of (sp Gu Y; Natoli SN; Liu Z; Clark DS; Hartwig JF Angew Chem Int Ed Engl; 2019 Sep; 58(39):13954-13960. PubMed ID: 31356719 [TBL] [Abstract][Full Text] [Related]
9. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Himiyama T; Okamoto Y Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938 [TBL] [Abstract][Full Text] [Related]
10. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Natoli SN; Hartwig JF Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of luminescent cyclometalated iridium(III) polypyridine complexes with a fluorous moiety: photophysics, protein-binding, bioconjugation, and cellular uptake properties. Leung SK; Liu HW; Lo KK Chem Commun (Camb); 2011 Oct; 47(38):10548-50. PubMed ID: 21526248 [TBL] [Abstract][Full Text] [Related]
12. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711 [TBL] [Abstract][Full Text] [Related]
14. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Oohora K; Onoda A; Hayashi T Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477 [TBL] [Abstract][Full Text] [Related]
15. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond. Wang Y; Huang Z; Liu G; Huang Z Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837 [TBL] [Abstract][Full Text] [Related]
16. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors. Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209 [TBL] [Abstract][Full Text] [Related]
17. Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes. Lo KK; Chan BT; Liu HW; Zhang KY; Li SP; Tang TS Chem Commun (Camb); 2013 May; 49(39):4271-3. PubMed ID: 23123631 [TBL] [Abstract][Full Text] [Related]
18. Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands. Sanz-Villafruela J; Bermejo-Casadesus C; Zafon E; Martínez-Alonso M; Durá G; Heras A; Soriano-Díaz I; Giussani A; Ortí E; Tebar F; Espino G; Massaguer A Eur J Med Chem; 2024 Oct; 276():116618. PubMed ID: 38972079 [TBL] [Abstract][Full Text] [Related]
19. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Reetz MT Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339 [TBL] [Abstract][Full Text] [Related]
20. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Schreier MR; Guo X; Pfund B; Okamoto Y; Ward TR; Kerzig C; Wenger OS Acc Chem Res; 2022 May; 55(9):1290-1300. PubMed ID: 35414170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]