BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37060130)

  • 1. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution.
    Liu B; Zubi YS; Lewis JC
    Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering.
    Zubi YS; Liu B; Gu Y; Sahoo D; Lewis JC
    Chem Sci; 2022 Feb; 13(5):1459-1468. PubMed ID: 35222930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase.
    Martins FL; Pordea A; Jäger CM
    Faraday Discuss; 2022 May; 234(0):315-335. PubMed ID: 35156975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Selective Functionalization of (sp
    Gu Y; Natoli SN; Liu Z; Clark DS; Hartwig JF
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13954-13960. PubMed ID: 31356719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of luminescent cyclometalated iridium(III) polypyridine complexes with a fluorous moiety: photophysics, protein-binding, bioconjugation, and cellular uptake properties.
    Leung SK; Liu HW; Lo KK
    Chem Commun (Camb); 2011 Oct; 47(38):10548-50. PubMed ID: 21526248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond.
    Wang Y; Huang Z; Liu G; Huang Z
    Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
    Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A
    J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes.
    Lo KK; Chan BT; Liu HW; Zhang KY; Li SP; Tang TS
    Chem Commun (Camb); 2013 May; 49(39):4271-3. PubMed ID: 23123631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
    Schreier MR; Guo X; Pfund B; Okamoto Y; Ward TR; Kerzig C; Wenger OS
    Acc Chem Res; 2022 May; 55(9):1290-1300. PubMed ID: 35414170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.