BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37060215)

  • 1. Flow Synthesis of Gigantic Porphyrinic Cages: Facile Synthesis of P
    Lee H; Joo JU; Dhamija A; Gunnam A; Koo J; Giri P; Ho Ko Y; Hwang IC; Kim DP; Kim K
    Chemistry; 2023 Jun; 29(34):e202300760. PubMed ID: 37060215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and solution studies of silver(I)-assembled porphyrin coordination cages.
    Durot S; Flamigni L; Taesch J; Dang TT; Heitz V; Ventura B
    Chemistry; 2014 Aug; 20(32):9979-90. PubMed ID: 25042755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape- and Size-Tunable Synthesis of Covalent Organic Cages through Rh-Catalyzed Regioselective [2+2+2] Cycloaddition.
    Sato Y; Abekura M; Oriki T; Nagashima Y; Uekusa H; Tanaka K
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202304041. PubMed ID: 37041121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Prepare Kinetically Stable Self-assembled Pt
    Bobylev EO; Poole DA; de Bruin B; Reek JNH
    Chemistry; 2021 Sep; 27(49):12667-12674. PubMed ID: 34155700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of double-decker cages induced by coordination of perylene bisimide with a trimeric Zn porphyrin: study of the electron transfer dynamics between the two photoactive components.
    Oliva AI; Ventura B; Würthner F; Camara-Campos A; Hunter CA; Ballester P; Flamigni L
    Dalton Trans; 2009 May; (20):4023-37. PubMed ID: 19440602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid-directed assembly of the lipid-containing membrane of bacteriophage phi 6.
    Johnson MD; Mindich L
    J Bacteriol; 1994 Jul; 176(13):4124-32. PubMed ID: 8021194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Metaloid-Directed Self-Assembly and Dynamic Covalent Systems as a Route to Large Organic Cages and Cyclophanes.
    Collins MS; Phan NM; Zakharov LN; Johnson DW
    Inorg Chem; 2018 Apr; 57(7):3486-3496. PubMed ID: 29412648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and dynamic behavior of large polyhedral coordination cages: an unusual cage-to-cage interconversion.
    Stephenson A; Argent SP; Riis-Johannessen T; Tidmarsh IS; Ward MD
    J Am Chem Soc; 2011 Feb; 133(4):858-70. PubMed ID: 21175180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization.
    Wang Y; Sun Y; Shi P; Sartin MM; Lin X; Zhang P; Fang H; Peng P; Tian Z; Cao X
    Chem Sci; 2019 Sep; 10(35):8076-8082. PubMed ID: 31908753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal-organic frameworks.
    Duguet M; Lemarchand A; Benseghir Y; Mialane P; Gomez-Mingot M; Roch-Marchal C; Haouas M; Fontecave M; Mellot-Draznieks C; Sassoye C; Dolbecq A
    Chem Commun (Camb); 2020 Sep; 56(70):10143-10146. PubMed ID: 32749407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial production of lipid-protein vesicles using enveloped bacteriophage phi6.
    Lyytinen OL; Starkova D; Poranen MM
    Microb Cell Fact; 2019 Feb; 18(1):29. PubMed ID: 30732607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streamlining the automated discovery of porous organic cages.
    Basford AR; Bennett SK; Xiao M; Turcani L; Allen J; Jelfs KE; Greenaway RL
    Chem Sci; 2024 May; 15(17):6331-6348. PubMed ID: 38699265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrically restricted intermediates in the self-assembly of an M12L24 cuboctahedral complex.
    Fujita D; Yokoyama H; Ueda Y; Sato S; Fujita M
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):155-8. PubMed ID: 25381901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic flow synthesis of porous organic cages.
    Briggs ME; Slater AG; Lunt N; Jiang S; Little MA; Greenaway RL; Hasell T; Battilocchio C; Ley SV; Cooper AI
    Chem Commun (Camb); 2015 Dec; 51(98):17390-3. PubMed ID: 26463103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Approaches for the Discovery of Supramolecular Organic Cages.
    Greenaway RL; Jelfs KE
    Chempluschem; 2020 Aug; 85(8):1813-1823. PubMed ID: 32833311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination chemistry-assembled porphyrinic catenanes.
    Beyler M; Heitz V; Sauvage JP
    J Am Chem Soc; 2010 Mar; 132(12):4409-17. PubMed ID: 20199079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Size and Geometry of Heteroleptic Coordination Cages by Varying the Ligand Bent Angle.
    Li RJ; Fadaei-Tirani F; Scopelliti R; Severin K
    Chemistry; 2021 Jun; 27(36):9439-9445. PubMed ID: 33998736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages.
    Poole Iii DA; Bobylev EO; Mathew S; Reek JNH
    Chem Sci; 2022 Aug; 13(34):10141-10148. PubMed ID: 36128226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the Assembly of Metal-Organic Cages into Complex Coordination Networks.
    Yadav A; Gupta AK; Steiner A; Boomishankar R
    Chemistry; 2017 Dec; 23(72):18296-18302. PubMed ID: 29076576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.