These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 37060479)
1. New insights on the adsorption of phenol red dyes from synthetic wastewater using activated carbon/Fe Nobakht A; Jafari D; Esfandyari M Environ Monit Assess; 2023 Apr; 195(5):574. PubMed ID: 37060479 [TBL] [Abstract][Full Text] [Related]
2. Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes Hapiz A; Jawad AH; Wilson LD; ALOthman ZA; Abdulhameed AS; Algburi S Int J Phytoremediation; 2024; 26(4):579-593. PubMed ID: 37740456 [TBL] [Abstract][Full Text] [Related]
3. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336 [TBL] [Abstract][Full Text] [Related]
4. Biocomposite of sodium-alginate with acidified clay for wastewater treatment: Kinetic, equilibrium and thermodynamic studies. Kausar A; Sher F; Hazafa A; Javed A; Sillanpää M; Iqbal M Int J Biol Macromol; 2020 Oct; 161():1272-1285. PubMed ID: 32502609 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O. Ghaedi M; Pakniat M; Mahmoudi Z; Hajati S; Sahraei R; Daneshfar A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():402-9. PubMed ID: 24412794 [TBL] [Abstract][Full Text] [Related]
6. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies. Lim CK; Bay HH; Neoh CH; Aris A; Abdul Majid Z; Ibrahim Z Environ Sci Pollut Res Int; 2013 Oct; 20(10):7243-55. PubMed ID: 23653315 [TBL] [Abstract][Full Text] [Related]
7. Activated carbon embedded alginate beads for removing nonsteroidal anti-inflammatory drug naproxen from wastewater: equilibrium, kinetics, thermodynamics, desorption, and reusability. Ozcan N; Saloglu D Water Sci Technol; 2020 Apr; 81(7):1432-1444. PubMed ID: 32616695 [TBL] [Abstract][Full Text] [Related]
8. Coagulation-adsorption-oxidation for removing dyes from tannery wastewater. Mim S; Hashem MA; Payel S Environ Monit Assess; 2023 May; 195(6):695. PubMed ID: 37208564 [TBL] [Abstract][Full Text] [Related]
9. Removal of arsenic from aqueous solution by novel iron and iron-zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic, thermodynamic and breakthrough curve modelling. Sahu N; Singh J; Koduru JR Environ Res; 2021 Sep; 200():111431. PubMed ID: 34081972 [TBL] [Abstract][Full Text] [Related]
10. Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: Modeling, adsorption behavior, and mechanism analysis. Algethami JS; Alhamami MAM; Alqadami AA; Melhi S; Seliem AF Int J Biol Macromol; 2024 Jan; 254(Pt 1):127767. PubMed ID: 38287576 [TBL] [Abstract][Full Text] [Related]
11. New insights on manganese dioxide nanoparticles loaded on cellulose-based biochar of cassava peel for the adsorption of three cationic dyes from wastewater. Belcaid A; Beakou BH; Bouhsina S; Anouar A Int J Biol Macromol; 2023 Jun; 241():124534. PubMed ID: 37121420 [TBL] [Abstract][Full Text] [Related]
12. Fast adsorption of phosphate (PO Younes H; Mahanna H; El-Etriby HK Water Sci Technol; 2019 Nov; 80(9):1643-1653. PubMed ID: 32039896 [TBL] [Abstract][Full Text] [Related]
13. The effective removal of phenol from aqueous solution via adsorption on CS/β-CD/CTA multicomponent adsorbent and its application for COD degradation of drilling wastewater. Peng H; Zou C; Wang C; Tang W; Zhou J Environ Sci Pollut Res Int; 2020 Sep; 27(27):33668-33680. PubMed ID: 32533479 [TBL] [Abstract][Full Text] [Related]
14. Systematic studies on the effect of structural modification of orange peel for remediation of phenol contaminated water. Kumar L; Yadav V; Yadav M; Saini N; Jagannathan K; Murugesan V; Ezhilselvi V Water Environ Res; 2023 May; 95(5):e10872. PubMed ID: 37113106 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. Bardhan M; Novera TM; Tabassum M; Islam MA; Jawad AH; Islam MA Water Sci Technol; 2020 Nov; 82(9):1932-1949. PubMed ID: 33201856 [TBL] [Abstract][Full Text] [Related]
16. Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye. Hafdi H; Joudi M; Mouldar J; Hatimi B; Nasrellah H; El Mhammedi MA; Bakasse M Environ Res; 2020 May; 184():109322. PubMed ID: 32146215 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Rashtbari Y; Sher F; Afshin S; Hamzezadeh A; Ahmadi S; Azhar O; Rastegar A; Ghosh S; Poureshgh Y Chemosphere; 2022 Jan; 287(Pt 1):132114. PubMed ID: 34481171 [TBL] [Abstract][Full Text] [Related]
18. Adsorbing low concentrations of Cr(VI) onto CeO Niu J; Jia X; Zhao Y; Liu Y; Zhong W; Zhai Z; Li Z Water Sci Technol; 2018 May; 77(9-10):2327-2340. PubMed ID: 29757185 [TBL] [Abstract][Full Text] [Related]
19. Efficient liquid phase confiscation of nile blue using a novel hybrid nanocomposite synthesized from guar gum-polyacrylamide and erbium oxide. Hussain D; Khan SA; Khan TA; Alharthi SS Sci Rep; 2022 Aug; 12(1):14656. PubMed ID: 36038589 [TBL] [Abstract][Full Text] [Related]
20. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies. Mohrazi A; Ghasemi-Fasaei R Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]