BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37060816)

  • 1. Structural elucidation of 3-nitrophenylhydrazine derivatives of tricarboxylic acid cycle acids and optimization of their fragmentation to boost sensitivity in liquid chromatography-mass spectrometry.
    Hodek O; Henderson J; Argemi-Muntadas L; Khan A; Moritz T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 May; 1222():123719. PubMed ID: 37060816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-mode chromatography-mass spectrometry enables targeted and untargeted screening of carboxylic acids in biological samples.
    Hodek O; Argemi-Muntadas L; Khan A; Moritz T
    Anal Methods; 2022 Mar; 14(10):1015-1022. PubMed ID: 35195623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving liquid chromatography-tandem mass spectrometry determination of polycarboxylic acids in human urine by chemical derivatization. Comparison of o-benzyl hydroxylamine and 2-picolyl amine.
    Gomez-Gomez A; Soldevila A; Pizarro N; Andreu-Fernandez V; Pozo OJ
    J Pharm Biomed Anal; 2019 Feb; 164():382-394. PubMed ID: 30466023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivatization of the tricarboxylic acid cycle intermediates and analysis by online solid-phase extraction-liquid chromatography-mass spectrometry with positive-ion electrospray ionization.
    Kloos D; Derks RJ; Wijtmans M; Lingeman H; Mayboroda OA; Deelder AM; Niessen WM; Giera M
    J Chromatogr A; 2012 Apr; 1232():19-26. PubMed ID: 21862021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of LC-MS-based methods for the determination of carboxylic acids in animal matrices.
    Schwartz-Zimmermann HE; Hündler M; Reiterer N; Ricci S; Rivera-Chacon R; Castillo-Lopez E; Zebeli Q; Berthiller F
    Anal Bioanal Chem; 2024 Feb; 416(5):1199-1215. PubMed ID: 38177453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS.
    Han J; Gagnon S; Eckle T; Borchers CH
    Electrophoresis; 2013 Oct; 34(19):2891-900. PubMed ID: 23580203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic analyzer for highly polar carboxylic acids based on fluorescence derivatization-liquid chromatography.
    Todoroki K; Nakano T; Ishii Y; Goto K; Tomita R; Fujioka T; Min JZ; Inoue K; Toyo'oka T
    Biomed Chromatogr; 2015 Mar; 29(3):445-51. PubMed ID: 25082081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of up to twenty carboxylic acid containing compounds in clinically relevant matrices by o-benzylhydroxylamine derivatization and liquid chromatography-tandem mass spectrometry.
    Gomez-Gomez A; Olesti E; Montero-San-Martin B; Soldevila A; Deschamps T; Pizarro N; de la Torre R; Pozo OJ
    J Pharm Biomed Anal; 2022 Jan; 208():114450. PubMed ID: 34798391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS).
    Valdivia-Garcia MA; Chappell KE; Camuzeaux S; Olmo-García L; van der Sluis VH; Radhakrishnan ST; Stephens H; Bouri S; de Campos Braz LM; Williams HT; Lewis MR; Frost G; Li JV
    J Pharm Biomed Anal; 2022 Nov; 221():115060. PubMed ID: 36166933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an HPLC-fluorescence determination method for carboxylic acids related to the tricarboxylic acid cycle as a metabolome tool.
    Kubota K; Fukushima T; Yuji R; Miyano H; Hirayama K; Santa T; Imai K
    Biomed Chromatogr; 2005 Dec; 19(10):788-95. PubMed ID: 15971288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a series of prolylamidepyridines as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC-ESI-MS/MS and the application to human saliva.
    Kuwabara T; Takayama T; Todoroki K; Inoue K; Min JZ; Toyo'oka T
    Anal Bioanal Chem; 2014 Apr; 406(11):2641-9. PubMed ID: 24500756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Pyridinium Derivatization Reagent for Highly Sensitive Detection of Poly(carboxylic acid)s Using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry.
    Kawasue S; Sakaguchi Y; Koga R; Yoshida H; Nohta H
    J Am Soc Mass Spectrom; 2022 Aug; 33(8):1492-1498. PubMed ID: 35763617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography-electrospray ionization-tandem mass spectrometry.
    Higashi T; Ichikawa T; Inagaki S; Min JZ; Fukushima T; Toyo'oka T
    J Pharm Biomed Anal; 2010 Sep; 52(5):809-18. PubMed ID: 20376914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry.
    Han J; Lin K; Sequeira C; Borchers CH
    Anal Chim Acta; 2015 Jan; 854():86-94. PubMed ID: 25479871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous 3-Nitrophenylhydrazine Derivatization Strategy of Carbonyl, Carboxyl and Phosphoryl Submetabolome for LC-MS/MS-Based Targeted Metabolomics with Improved Sensitivity and Coverage.
    Meng X; Pang H; Sun F; Jin X; Wang B; Yao K; Yao L; Wang L; Hu Z
    Anal Chem; 2021 Jul; 93(29):10075-10083. PubMed ID: 34270209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative characterization of glutaminolysis in human plasma using liquid chromatography-tandem mass spectrometry.
    Hua Y; Yang X; Li R; Liu P; Liu P; Li L; Yuan X; Hua X; Tian Y; Zhang Z; Huang Y
    Anal Bioanal Chem; 2019 Apr; 411(10):2045-2055. PubMed ID: 30739195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reagent peak-free liquid chromatography-fluorescence analysis of carboxylic acids using a fluorous scavenging-derivatization method.
    Todoroki K; Hashimoto H; Mikawa T; Itoyama M; Hayama T; Kojima E; Yoshida H; Nohta H; Yamaguchi M
    Anal Bioanal Chem; 2010 Jul; 397(6):2409-16. PubMed ID: 20509021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous quantification of fatty acids in serum with dual derivatization by liquid chromatography-tandem mass spectrometry.
    Fu Z; Xu X; Lin C; Yang H; Zhao L; Zhou Y; Song Y; Zhang M; Zhang H; Hu P
    J Sep Sci; 2023 Jul; 46(13):e2300003. PubMed ID: 37078121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide.
    Willacey CCW; Naaktgeboren M; Lucumi Moreno E; Wegrzyn AB; van der Es D; Karu N; Fleming RMT; Harms AC; Hankemeier T
    J Chromatogr A; 2019 Dec; 1608():460413. PubMed ID: 31395359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines.
    Xu J; Zhai Y; Feng L; Xie T; Yao W; Shan J; Zhang L
    J Pharm Biomed Anal; 2019 Jul; 171():171-179. PubMed ID: 31005043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.