These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37061012)
1. Progress Note Understanding - Assessment and Plan Reasoning: Overview of the 2022 N2C2 Track 3 shared task. Gao Y; Dligach D; Miller T; Churpek MM; Uzuner O; Afshar M J Biomed Inform; 2023 Jun; 142():104346. PubMed ID: 37061012 [TBL] [Abstract][Full Text] [Related]
2. A hybrid system to understand the relations between assessments and plans in progress notes. Gao J; He S; Hu J; Chen G J Biomed Inform; 2023 May; 141():104363. PubMed ID: 37054961 [TBL] [Abstract][Full Text] [Related]
3. The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview. Wang Y; Fu S; Shen F; Henry S; Uzuner O; Liu H JMIR Med Inform; 2020 Nov; 8(11):e23375. PubMed ID: 33245291 [TBL] [Abstract][Full Text] [Related]
4. Family History Extraction From Synthetic Clinical Narratives Using Natural Language Processing: Overview and Evaluation of a Challenge Data Set and Solutions for the 2019 National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing (OHNLP) Competition. Shen F; Liu S; Fu S; Wang Y; Henry S; Uzuner O; Liu H JMIR Med Inform; 2021 Jan; 9(1):e24008. PubMed ID: 33502329 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical Annotation for Building A Suite of Clinical Natural Language Processing Tasks: Progress Note Understanding. Gao Y; Dligach D; Miller T; Tesch S; Laffin R; Churpek MM; Afshar M LREC Int Conf Lang Resour Eval; 2022 Jun; 2022():5484-5493. PubMed ID: 35939277 [TBL] [Abstract][Full Text] [Related]
6. Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study. Nishiyama T; Yamaguchi A; Han P; Pereira LWK; Otsuki Y; Andrade GHB; Kudo N; Yada S; Wakamiya S; Aramaki E; Takada M; Toi M JMIR Med Inform; 2024 Sep; 12():e58977. PubMed ID: 39316418 [TBL] [Abstract][Full Text] [Related]
7. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
8. DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing. Gao Y; Dligach D; Miller T; Caskey J; Sharma B; Churpek MM; Afshar M J Biomed Inform; 2023 Feb; 138():104286. PubMed ID: 36706848 [TBL] [Abstract][Full Text] [Related]
9. Predicting relations between SOAP note sections: The value of incorporating a clinical information model. Socrates V; Gilson A; Lopez K; Chi L; Taylor RA; Chartash D J Biomed Inform; 2023 May; 141():104360. PubMed ID: 37061014 [TBL] [Abstract][Full Text] [Related]
10. Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0). Jagannatha A; Liu F; Liu W; Yu H Drug Saf; 2019 Jan; 42(1):99-111. PubMed ID: 30649735 [TBL] [Abstract][Full Text] [Related]
11. Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be. Olex AL; McInnes BT J Biomed Inform; 2021 Jun; 118():103784. PubMed ID: 33862232 [TBL] [Abstract][Full Text] [Related]
12. The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for clinical records. Henry S; Wang Y; Shen F; Uzuner O J Am Med Inform Assoc; 2020 Oct; 27(10):1529-1537. PubMed ID: 32968800 [TBL] [Abstract][Full Text] [Related]
13. 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records. Henry S; Buchan K; Filannino M; Stubbs A; Uzuner O J Am Med Inform Assoc; 2020 Jan; 27(1):3-12. PubMed ID: 31584655 [TBL] [Abstract][Full Text] [Related]
14. Overview of the 2022 n2c2 shared task on contextualized medication event extraction in clinical notes. Mahajan D; Liang JJ; Tsou CH; Uzuner Ö J Biomed Inform; 2023 Aug; 144():104432. PubMed ID: 37356640 [TBL] [Abstract][Full Text] [Related]
15. Temporal information extraction from mental health records to identify duration of untreated psychosis. Viani N; Kam J; Yin L; Bittar A; Dutta R; Patel R; Stewart R; Velupillai S J Biomed Semantics; 2020 Mar; 11(1):2. PubMed ID: 32156302 [TBL] [Abstract][Full Text] [Related]
16. A scoping review of publicly available language tasks in clinical natural language processing. Gao Y; Dligach D; Christensen L; Tesch S; Laffin R; Xu D; Miller T; Uzuner O; Churpek MM; Afshar M J Am Med Inform Assoc; 2022 Sep; 29(10):1797-1806. PubMed ID: 35923088 [TBL] [Abstract][Full Text] [Related]
17. Ensemble method-based extraction of medication and related information from clinical texts. Kim Y; Meystre SM J Am Med Inform Assoc; 2020 Jan; 27(1):31-38. PubMed ID: 31282932 [TBL] [Abstract][Full Text] [Related]
18. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641 [TBL] [Abstract][Full Text] [Related]
19. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models. Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658 [TBL] [Abstract][Full Text] [Related]
20. "Note Bloat" impacts deep learning-based NLP models for clinical prediction tasks. Liu J; Capurro D; Nguyen A; Verspoor K J Biomed Inform; 2022 Sep; 133():104149. PubMed ID: 35878821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]