BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37061334)

  • 1. Chromatin regulators in DNA replication and genome stability maintenance during S-phase.
    Gospodinov A; Dzhokova S; Petrova M; Ugrinova I
    Adv Protein Chem Struct Biol; 2023; 135():243-280. PubMed ID: 37061334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The linker histone H1-BRCA1 axis is a crucial mediator of replication fork stability.
    Ozgencil M; Dullovi A; Christiane Higos RC; Hořejší Z; Bellelli R
    Life Sci Alliance; 2023 Sep; 6(9):. PubMed ID: 37364916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin conformation regulates the coordination between DNA replication and transcription.
    Almeida R; Fernández-Justel JM; Santa-María C; Cadoret JC; Cano-Aroca L; Lombraña R; Herranz G; Agresti A; Gómez M
    Nat Commun; 2018 Apr; 9(1):1590. PubMed ID: 29686321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication stress: from chromatin to immunity and beyond.
    Lin YL; Pasero P
    Curr Opin Genet Dev; 2021 Dec; 71():136-142. PubMed ID: 34455237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preventing replication fork collapse to maintain genome integrity.
    Cortez D
    DNA Repair (Amst); 2015 Aug; 32():149-157. PubMed ID: 25957489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy.
    Xia D; Zhu X; Wang Y; Gong P; Su HS; Xu X
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37728310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication stress, a source of epigenetic aberrations in cancer?
    Jasencakova Z; Groth A
    Bioessays; 2010 Oct; 32(10):847-55. PubMed ID: 20726011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone dynamics during DNA replication stress.
    Hsu CL; Chong SY; Lin CY; Kao CF
    J Biomed Sci; 2021 Jun; 28(1):48. PubMed ID: 34144707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New histone supply regulates replication fork speed and PCNA unloading.
    Mejlvang J; Feng Y; Alabert C; Neelsen KJ; Jasencakova Z; Zhao X; Lees M; Sandelin A; Pasero P; Lopes M; Groth A
    J Cell Biol; 2014 Jan; 204(1):29-43. PubMed ID: 24379417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone lysine methylation and chromatin replication.
    Rivera C; Gurard-Levin ZA; Almouzni G; Loyola A
    Biochim Biophys Acta; 2014 Dec; 1839(12):1433-9. PubMed ID: 24686120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OTUD5 limits replication fork instability by organizing chromatin remodelers.
    de Vivo A; Song H; Lee Y; Tirado-Class N; Sanchez A; Westerheide S; Dungrawala H; Kee Y
    Nucleic Acids Res; 2023 Oct; 51(19):10467-10483. PubMed ID: 37713620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
    Feng G; Yuan Y; Li Z; Wang L; Zhang B; Luo J; Ji J; Kong D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14563-14572. PubMed ID: 31262821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication fork dynamics and the DNA damage response.
    Jones RM; Petermann E
    Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
    Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A
    DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex.
    Saredi G; Huang H; Hammond CM; Alabert C; Bekker-Jensen S; Forne I; Reverón-Gómez N; Foster BM; Mlejnkova L; Bartke T; Cejka P; Mailand N; Imhof A; Patel DJ; Groth A
    Nature; 2016 Jun; 534(7609):714-718. PubMed ID: 27338793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription.
    Bermejo R; Lai MS; Foiani M
    Mol Cell; 2012 Mar; 45(6):710-8. PubMed ID: 22464441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of protein dynamics at active, stalled, and collapsed replication forks.
    Sirbu BM; Couch FB; Feigerle JT; Bhaskara S; Hiebert SW; Cortez D
    Genes Dev; 2011 Jun; 25(12):1320-7. PubMed ID: 21685366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of replication fork speed: Mechanisms and impact on genomic stability.
    Merchut-Maya JM; Bartek J; Maya-Mendoza A
    DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-phase-dependent p50/NF-кB1 phosphorylation in response to ATR and replication stress acts to maintain genomic stability.
    Crawley CD; Kang S; Bernal GM; Wahlstrom JS; Voce DJ; Cahill KE; Garofalo A; Raleigh DR; Weichselbaum RR; Yamini B
    Cell Cycle; 2015; 14(4):566-76. PubMed ID: 25590437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.