These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37062244)

  • 1. Brief mock-scan training reduces head motion during real scanning for children: A growth curve study.
    Gao P; Wang YS; Lu QY; Rong MJ; Fan XR; Holmes AJ; Dong HM; Li HF; Zuo XN
    Dev Cogn Neurosci; 2023 Jun; 61():101244. PubMed ID: 37062244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head motion during fMRI tasks is reduced in children and adults if participants take breaks.
    Meissner TW; Walbrin J; Nordt M; Koldewyn K; Weigelt S
    Dev Cogn Neurosci; 2020 Aug; 44():100803. PubMed ID: 32716852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time motion monitoring improves functional MRI data quality in infants.
    Badke D'Andrea C; Kenley JK; Montez DF; Mirro AE; Miller RL; Earl EA; Koller JM; Sung S; Yacoub E; Elison JT; Fair DA; Dosenbach NUF; Rogers CE; Smyser CD; Greene DJ
    Dev Cogn Neurosci; 2022 Jun; 55():101116. PubMed ID: 35636344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral interventions for reducing head motion during MRI scans in children.
    Greene DJ; Koller JM; Hampton JM; Wesevich V; Van AN; Nguyen AL; Hoyt CR; McIntyre L; Earl EA; Klein RL; Shimony JS; Petersen SE; Schlaggar BL; Fair DA; Dosenbach NUF
    Neuroimage; 2018 May; 171():234-245. PubMed ID: 29337280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time motion analytics during brain MRI improve data quality and reduce costs.
    Dosenbach NUF; Koller JM; Earl EA; Miranda-Dominguez O; Klein RL; Van AN; Snyder AZ; Nagel BJ; Nigg JT; Nguyen AL; Wesevich V; Greene DJ; Fair DA
    Neuroimage; 2017 Nov; 161():80-93. PubMed ID: 28803940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less head motion during MRI under task than resting-state conditions.
    Huijbers W; Van Dijk KRA; Boenniger MM; Stirnberg R; Breteler MMB
    Neuroimage; 2017 Feb; 147():111-120. PubMed ID: 27919751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner--the Diabetes Research in Children Network (DirecNet) experience.
    Barnea-Goraly N; Weinzimer SA; Ruedy KJ; Mauras N; Beck RW; Marzelli MJ; Mazaika PK; Aye T; White NH; Tsalikian E; Fox L; Kollman C; Cheng P; Reiss AL;
    Pediatr Radiol; 2014 Feb; 44(2):181-6. PubMed ID: 24096802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting multiscan MRI outcomes in children with neurodevelopmental conditions following MRI simulator training.
    Simhal AK; Filho JOA; Segura P; Cloud J; Petkova E; Gallagher R; Castellanos FX; Colcombe S; Milham MP; Di Martino A
    Dev Cogn Neurosci; 2021 Dec; 52():101009. PubMed ID: 34649041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion tensor imaging and resting-state functional MRI-scanning in 5- and 6-year-old children: training protocol and motion assessment.
    Theys C; Wouters J; Ghesquière P
    PLoS One; 2014; 9(4):e94019. PubMed ID: 24718364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of respiratory artifacts in MRI head motion estimates.
    Fair DA; Miranda-Dominguez O; Snyder AZ; Perrone A; Earl EA; Van AN; Koller JM; Feczko E; Tisdall MD; van der Kouwe A; Klein RL; Mirro AE; Hampton JM; Adeyemo B; Laumann TO; Gratton C; Greene DJ; Schlaggar BL; Hagler DJ; Watts R; Garavan H; Barch DM; Nigg JT; Petersen SE; Dale AM; Feldstein-Ewing SW; Nagel BJ; Dosenbach NUF
    Neuroimage; 2020 Mar; 208():116400. PubMed ID: 31778819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.
    Satterthwaite TD; Elliott MA; Gerraty RT; Ruparel K; Loughead J; Calkins ME; Eickhoff SB; Hakonarson H; Gur RC; Gur RE; Wolf DH
    Neuroimage; 2013 Jan; 64():240-56. PubMed ID: 22926292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.
    Savalia NK; Agres PF; Chan MY; Feczko EJ; Kennedy KM; Wig GS
    Hum Brain Mapp; 2017 Jan; 38(1):472-492. PubMed ID: 27634551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.
    Alexander-Bloch A; Clasen L; Stockman M; Ronan L; Lalonde F; Giedd J; Raznahan A
    Hum Brain Mapp; 2016 Jul; 37(7):2385-97. PubMed ID: 27004471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and environmental influences on MRI scan quantity and quality.
    Achterberg M; van der Meulen M
    Dev Cogn Neurosci; 2019 Aug; 38():100667. PubMed ID: 31170550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Customized head molds reduce motion during resting state fMRI scans.
    Power JD; Silver BM; Silverman MR; Ajodan EL; Bos DJ; Jones RM
    Neuroimage; 2019 Apr; 189():141-149. PubMed ID: 30639840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the Financial Savings of Motion Correction in Brain MRI: A Model-Based Estimate of the Costs Arising From Patient Head Motion and Potential Savings From Implementation of Motion Correction.
    Slipsager JM; Glimberg SL; Søgaard J; Paulsen RR; Johannesen HH; Martens PC; Seth A; Marner L; Henriksen OM; Olesen OV; Højgaard L
    J Magn Reson Imaging; 2020 Sep; 52(3):731-738. PubMed ID: 32144848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-motion fMRI data can be obtained in pediatric participants undergoing a 60-minute scan protocol.
    Horien C; Fontenelle S; Joseph K; Powell N; Nutor C; Fortes D; Butler M; Powell K; Macris D; Lee K; Greene AS; McPartland JC; Volkmar FR; Scheinost D; Chawarska K; Constable RT
    Sci Rep; 2020 Dec; 10(1):21855. PubMed ID: 33318557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
    Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET
    Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.