These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37062254)

  • 1. Hemolysis performance analysis and a novel estimation model of roller pump system.
    Gao Y; Li M; Jiang M; Zhang Y; Wu C; Ji X
    Comput Biol Med; 2023 Jun; 159():106842. PubMed ID: 37062254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research of flow dynamics and occlusion condition in roller pump systems used for ventricular assist.
    Zhou Y; Sun B; Chen M; Cui C
    Artif Organs; 2021 Jan; 45(1):E1-E13. PubMed ID: 32735710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Flow Rate Response to Pumping Frequency and Reduced Hemolysis in the Drastically Under-Occluded Pulsatile Roller Pump.
    Yap CH; Lai CQ; Loh IG; Ong TZ
    Artif Organs; 2017 Feb; 41(2):178-185. PubMed ID: 27653754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
    Yu H; Janiga G; Thévenin D
    Artif Organs; 2016 Apr; 40(4):341-52. PubMed ID: 26526039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
    Mantegazza A; Tobin N; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump.
    Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA
    Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
    Yu H; Engel S; Janiga G; Thévenin D
    Artif Organs; 2017 Jul; 41(7):603-621. PubMed ID: 28643335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical hemolysis performance evaluation of a rotary blood pump under different speed modulation profiles.
    Huang F; Lei H; Ying S; Fu Y; Li Q; Ruan X
    Front Physiol; 2023; 14():1116266. PubMed ID: 36818439
    [No Abstract]   [Full Text] [Related]  

  • 13. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemolysis test of non-pulsatile and pulsatile impeller blood pumps.
    Qian KX; Fei Q
    Clin Phys Physiol Meas; 1988 May; 9(2):107-12. PubMed ID: 3391012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps.
    Puentener P; Schuck M; Kolar JW
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1370-1378. PubMed ID: 33048670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps. Guidelines for choosing a blood pump.
    Tamari Y; Lee-Sensiba K; Leonard EF; Parnell V; Tortolani AJ
    J Thorac Cardiovasc Surg; 1993 Dec; 106(6):997-1007. PubMed ID: 8246582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant safety advantages gained with an improved pressure-regulated blood pump.
    Montoya JP; Merz SI; Bartlett RH
    J Extra Corpor Technol; 1996 Jun; 28(2):71-8. PubMed ID: 10160447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and accuracy evaluation of a degree of occlusion visualization system for roller pumps used in cardiopulmonary bypass.
    Fukaya A; Shiraishi Y; Inoue Y; Yamada A; Sahara G; Kudo T; Aizawa Y; Yambe T
    J Artif Organs; 2021 Mar; 24(1):27-35. PubMed ID: 32930908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.