These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37062254)

  • 21. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps.
    He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ
    Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new computational fluid dynamics method for in-depth investigation of flow dynamics in roller pump systems.
    Zhou X; Liang XM; Zhao G; Su Y; Wang Y
    Artif Organs; 2014 Jul; 38(7):E106-17. PubMed ID: 24841894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stochastic simulation of the FDA centrifugal blood pump benchmark.
    Karimi MS; Razzaghi P; Raisee M; Hendrick P; Nourbakhsh A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1871-1887. PubMed ID: 34191187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps.
    Zhang J; Chen Z; Griffith BP; Wu ZJ
    Int J Artif Organs; 2020 Oct; 43(10):653-662. PubMed ID: 32043405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD.
    Onder A; Incebay O; Sen MA; Yapici R; Kalyoncu M
    Int J Artif Organs; 2021 Oct; 44(10):765-772. PubMed ID: 34128420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain-based blood damage estimation for computational design of ventricular assist devices.
    Gesenhues L; Pauli L; Behr M
    Int J Artif Organs; 2016 Jun; 39(4):166-70. PubMed ID: 27079416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Parametric Study of the Axial and Radial Clearances in a Centrifugal Rotary Blood Pump.
    Rezaienia MA; Paul G; Avital E; Rothman M; Korakianitis T
    ASAIO J; 2018; 64(5):643-650. PubMed ID: 29076943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Asztalos B; Masuzawa T; Tsukiya T; Endo S; Taenaka Y
    Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haemolysis during cardiopulmonary bypass: an in vivo comparison of standard roller pumps, nonocclusive roller pumps and centrifugal pumps.
    Hansbro SD; Sharpe DA; Catchpole R; Welsh KR; Munsch CM; McGoldrick JP; Kay PH
    Perfusion; 1999 Jan; 14(1):3-10. PubMed ID: 10074641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of non-conformal grid interfaces on the results of large eddy simulation of centrifugal blood pumps.
    Wu P; Huo JD; Zhang ZJ; Wang CJ
    Artif Organs; 2022 Sep; 46(9):1804-1816. PubMed ID: 35436356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel model for hemolysis estimation in rotating impeller blood pumps considering red blood cell aging.
    Wang L; Yun Z; Yao J; Tang X; Feng Y; Xiang C
    Front Physiol; 2023; 14():1174188. PubMed ID: 37123255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical simulation and comparative analysis of flow field in axial blood pumps.
    Peng Y; Wu Y; Tang X; Liu W; Chen D; Gao T; Xu Y; Zeng Y
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):723-7. PubMed ID: 22974125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.