These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37062873)
1. Methods for identifying precipitates and improving stability of chemically defined highly concentrated cell culture media. Forte T; Grinnell C; Zhang A; Polilli B; Leshinski J; Khattak S Biotechnol Prog; 2023; 39(4):e3345. PubMed ID: 37062873 [TBL] [Abstract][Full Text] [Related]
2. Investigating trace metal precipitation in highly concentrated cell culture media with Pourbaix diagrams. Brantley T; Moore B; Grinnell C; Khattak S Biotechnol Bioeng; 2021 Oct; 118(10):3888-3897. PubMed ID: 34143438 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Chinese hamster ovary cell culture feed media precipitate. Hoang D; Galbraith S; Kuang B; Johnson A; Yoon S Biotechnol Prog; 2021 Sep; 37(5):e3188. PubMed ID: 34165891 [TBL] [Abstract][Full Text] [Related]
4. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance. McElearney K; Ali A; Gilbert A; Kshirsagar R; Zang L Biotechnol Prog; 2016; 32(1):74-82. PubMed ID: 26560839 [TBL] [Abstract][Full Text] [Related]
5. Factors that determine stability of highly concentrated chemically defined production media. McCoy RE; Costa NA; Morris AE Biotechnol Prog; 2015; 31(2):493-502. PubMed ID: 25641710 [TBL] [Abstract][Full Text] [Related]
6. Examining the sources of variability in cell culture media used for biopharmaceutical production. McGillicuddy N; Floris P; Albrecht S; Bones J Biotechnol Lett; 2018 Jan; 40(1):5-21. PubMed ID: 28940015 [TBL] [Abstract][Full Text] [Related]
7. Elemental metal variance in cell culture raw materials for process risk profiling. Grinnell C; Bareford L; Matthews TE; Brantley T; Moore B; Kolwyck D Biotechnol Prog; 2020 Sep; 36(5):e3004. PubMed ID: 32309907 [TBL] [Abstract][Full Text] [Related]
8. A rapid, simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media. Ribeiro da Silva M; Zaborowska I; Carillo S; Bones J J Chromatogr A; 2021 Aug; 1651():462336. PubMed ID: 34153732 [TBL] [Abstract][Full Text] [Related]
9. Using MVDA with stoichiometric balances to optimize amino acid concentrations in chemically defined CHO cell culture medium for improved culture performance. Salim T; Chauhan G; Templeton N; Ling WLW Biotechnol Bioeng; 2022 Feb; 119(2):452-469. PubMed ID: 34811720 [TBL] [Abstract][Full Text] [Related]
10. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method. Cao X; Stimpfl G; Wen ZQ; Frank G; Hunter G PDA J Pharm Sci Technol; 2013; 67(1):63-73. PubMed ID: 23385565 [TBL] [Abstract][Full Text] [Related]
11. An ICP-MS platform for metal content assessment of cell culture media and evaluation of spikes in metal concentration on the quality of an IgG3:κ monoclonal antibody during production. Mohammad A; Agarabi C; Rogstad S; DiCioccio E; Brorson K; Ashraf M; Faustino PJ; Madhavarao CN J Pharm Biomed Anal; 2019 Jan; 162():91-100. PubMed ID: 30227357 [TBL] [Abstract][Full Text] [Related]
12. Cell culture media impact on drug product solution stability. Purdie JL; Kowle RL; Langland AL; Patel CN; Ouyang A; Olson DJ Biotechnol Prog; 2016 Jul; 32(4):998-1008. PubMed ID: 27111574 [TBL] [Abstract][Full Text] [Related]
13. Utilization of tyrosine- and histidine-containing dipeptides to enhance productivity and culture viability. Kang S; Mullen J; Miranda LP; Deshpande R Biotechnol Bioeng; 2012 Sep; 109(9):2286-94. PubMed ID: 22447498 [TBL] [Abstract][Full Text] [Related]
14. Effects of copper on CHO cells: cellular requirements and product quality considerations. Yuk IH; Russell S; Tang Y; Hsu WT; Mauger JB; Aulakh RP; Luo J; Gawlitzek M; Joly JC Biotechnol Prog; 2015; 31(1):226-38. PubMed ID: 25311542 [TBL] [Abstract][Full Text] [Related]
15. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater. Sun JM; Zhu WT; Huang JC Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827 [TBL] [Abstract][Full Text] [Related]
16. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Handlogten MW; Lee-O'Brien A; Roy G; Levitskaya SV; Venkat R; Singh S; Ahuja S Biotechnol Bioeng; 2018 Jan; 115(1):126-138. PubMed ID: 28941283 [TBL] [Abstract][Full Text] [Related]
17. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. Xu J; Rehmann MS; Xu X; Huang C; Tian J; Qian NX; Li ZJ MAbs; 2018 Apr; 10(3):488-499. PubMed ID: 29388872 [TBL] [Abstract][Full Text] [Related]
18. Chemical speciation of trace metals in mammalian cell culture media: looking under the hood to boost cellular performance and product quality. Stone AT; Dhara VG; Naik HM; Aliyu L; Lai J; Jenkins J; Betenbaugh MJ Curr Opin Biotechnol; 2021 Oct; 71():216-224. PubMed ID: 34478939 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric and Physico-Chemical Property Relationships of Chemically Defined Media Powders Used in the Production of Biotherapeutics. Dickens JE; Chen R; Bareford L; Talreja G; Kolwyck D J Pharm Sci; 2021 Apr; 110(4):1635-1642. PubMed ID: 33096139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]