These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 37063214)
1. Distinct hormonal and morphological control of dormancy and germination in Loades E; Pérez M; Turečková V; Tarkowská D; Strnad M; Seville A; Nakabayashi K; Leubner-Metzger G Front Plant Sci; 2023; 14():1156794. PubMed ID: 37063214 [TBL] [Abstract][Full Text] [Related]
2. Variation of seed heteromorphism in Chenopodium album and the effect of salinity stress on the descendants. Yao S; Lan H; Zhang F Ann Bot; 2010 Jun; 105(6):1015-25. PubMed ID: 20501882 [TBL] [Abstract][Full Text] [Related]
3. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related]
5. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica. Cao D; Baskin CC; Baskin JM; Yang F; Huang Z Ann Bot; 2012 Dec; 110(8):1545-58. PubMed ID: 22975287 [TBL] [Abstract][Full Text] [Related]
7. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Chen SY; Kuo SR; Chien CT Tree Physiol; 2008 Sep; 28(9):1431-9. PubMed ID: 18595855 [TBL] [Abstract][Full Text] [Related]
8. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress. Li W; Yamaguchi S; Khan MA; An P; Liu X; Tran LS Front Plant Sci; 2015; 6():1235. PubMed ID: 26793214 [TBL] [Abstract][Full Text] [Related]
9. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance. Yang F; Baskin JM; Baskin CC; Yang X; Cao D; Huang Z Ann Bot; 2015 Jan; 115(1):137-45. PubMed ID: 25395107 [TBL] [Abstract][Full Text] [Related]
10. The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures. Chandler JO; Wilhelmsson PKI; Fernandez-Pozo N; Graeber K; Arshad W; Pérez M; Steinbrecher T; Ullrich KK; Nguyen TP; Mérai Z; Mummenhoff K; Theißen G; Strnad M; Scheid OM; Schranz ME; Petřík I; Tarkowská D; Novák O; Rensing SA; Leubner-Metzger G Plant Cell; 2024 Jul; 36(7):2465-2490. PubMed ID: 38513609 [TBL] [Abstract][Full Text] [Related]
11. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Yano R; Kanno Y; Jikumaru Y; Nakabayashi K; Kamiya Y; Nambara E Plant Physiol; 2009 Oct; 151(2):641-54. PubMed ID: 19648230 [TBL] [Abstract][Full Text] [Related]
12. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars. Liu Y; Fang J; Xu F; Chu J; Yan C; Schläppi MR; Wang Y; Chu C J Genet Genomics; 2014 Jun; 41(6):327-38. PubMed ID: 24976122 [TBL] [Abstract][Full Text] [Related]
13. Seed after-ripening and over-expression of class I beta-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Leubner-Metzger G Planta; 2002 Oct; 215(6):959-68. PubMed ID: 12355156 [TBL] [Abstract][Full Text] [Related]
14. Variation in wild pea ( Hradilová I; Duchoslav M; Brus J; Pechanec V; Hýbl M; Kopecký P; Smržová L; Štefelová N; Vaclávek T; Bariotakis M; Machalová J; Hron K; Pirintsos S; Smýkal P PeerJ; 2019; 7():e6263. PubMed ID: 30656074 [TBL] [Abstract][Full Text] [Related]
15. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Graeber K; Linkies A; Müller K; Wunchova A; Rott A; Leubner-Metzger G Plant Mol Biol; 2010 May; 73(1-2):67-87. PubMed ID: 20013031 [TBL] [Abstract][Full Text] [Related]
16. Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. Footitt S; Clay HA; Dent K; Finch-Savage WE New Phytol; 2014 May; 202(3):929-939. PubMed ID: 24444091 [TBL] [Abstract][Full Text] [Related]
17. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. Liu A; Gao F; Kanno Y; Jordan MC; Kamiya Y; Seo M; Ayele BT PLoS One; 2013; 8(2):e56570. PubMed ID: 23437172 [TBL] [Abstract][Full Text] [Related]
18. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. Hauvermale AL; Tuttle KM; Takebayashi Y; Seo M; Steber CM Plant Cell Physiol; 2015 Sep; 56(9):1773-85. PubMed ID: 26136598 [TBL] [Abstract][Full Text] [Related]
19. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Grappin P; Bouinot D; Sotta B; Miginiac E; Jullien M Planta; 2000 Jan; 210(2):279-85. PubMed ID: 10664134 [TBL] [Abstract][Full Text] [Related]
20. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Chen H; Ruan J; Chu P; Fu W; Liang Z; Li Y; Tong J; Xiao L; Liu J; Li C; Huang S Plant J; 2020 Jan; 101(2):310-323. PubMed ID: 31536657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]